UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA

PROGRAMA DE ESTUDIO DE INGENIERÍA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

"ESTUDIO DE ESTABILIZACIÓN DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO, PROVINCIA DE MORROPÓN, DEPARTAMENTO DE PIURA"

Área de Investigación:

Geotecnia

Autor(es):

Br. Huayanay Guzmán, Karen Natalí Br. Mendoza Abramonte, Mario José

Jurado Evaluador:

Presidente : Ing. Henríquez Ulloa, Paúl
Secretario : Ing. Geldres Sánchez, Carmen
Vocal : Ing. Vargas López, Segundo

Asesor:

Ing. Luján Silva, Enrique Francisco Código ORCID: 0000-0001-8960-8810

> PIURA – PERÚ 2022

Fecha de sustentación: 2022/10/04

ACREDITACIONES

TÍTULO: "ESTUDIO DE ESTABILIZACIÓN DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO, PROVINCIA DE MORROPÓN, DEPARTAMENTO DE PIURA"

AUTORES: Br. Huayanay Guzmán, Karen Natali Br. Mendoza Abramonte, Mario José APROBADO POR: Ing. Henríquez Ulloa, Paúl Presidente N° CIP: 118101 Ing. Geldres Sánchez, Carmen Secretario N° CIP: 80599 Ing. Vargas López, Segundo

> Vocal N° CIP: 18687

Ing. Luján Silva, Enrique Francisco Asesor N° CIP: 54460

OII . 34400

UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA

PROGRAMA DE ESTUDIO DE INGENIERÍA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

"ESTUDIO DE ESTABILIZACIÓN DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO, PROVINCIA DE MORROPÓN, DEPARTAMENTO DE PIURA"

Área de Investigación:

Geotecnia

Autor(es):

Br. Huayanay Guzmán, Karen Natalí Br. Mendoza Abramonte, Mario José

Jurado Evaluador:

Presidente : Ing. Henríquez Ulloa, Paúl
Secretario : Ing. Geldres Sánchez, Carmen
Vocal : Ing. Vargas López, Segundo

Asesor:

Ing. Luján Silva, Enrique Francisco Código ORCID: 0000-0001-8960-8810

> PIURA – PERÚ 2022

Fecha de sustentación: 2022/10/04

DEDICATORIA

Este trabajo va dedicado, en primer lugar, a Dios, por ser mi guía espiritual en este proceso.

A mis padres y hermanos, por su apoyo incondicional y su ejemplo de perseverancia, enseñándome a no rendirme y a luchar siempre por mis metas.

Br. Karen Natali Huayanay Guzmán

DEDICATORIA

Dedicada a Dios quien ha sido mi fuerza constante, a través de su mano de amor y bondad llena mis días de felicidad. A mis padres Mario, Mercedes y mi hermano Daniel quienes con su amor, dedicación, paciencia y esfuerzo me han permitido llegar a lograr una meta más, gracias por inculcarme el valor de esfuerzo y perseverancia, para no temer a las adversidades de la vida, porque Dios siempre está conmigo. A toda mi familia que nunca perdieron la fe y el compromiso conmigo, porque creyeron siempre en su corazón que lograría cada meta que me trazaría. Finalmente quiero dedicar esta tesis a mi amado hogar, mi esposa Fátima por ser mi apoyo incondicional ante las circunstancias y mi hijo Gonzalo por ser mi mayor motivo y empuje de ser mejor cada día. Siempre los llevo en mi corazón.

Br. Mario José Mendoza Abramonte

AGRADECIMIENTO

Agradezco a Dios, por guiarme en todo momento, por ser mi fortaleza siempre y bendecirme con una carrera profesional de la cual me siento inmensamente orgullosa. A mis padres, por su apoyo y amor incondicional durante toda mi vida, por inculcarme principios y valores, por ser mi ejemplo de lucha y perseverancia para lograr lo que tanto he anhelado. A mis hermanos, por su apoyo y comprensión, que esto sea un motivo para mostrarles que todo esfuerzo en la vida es inmensamente recompensado. A mi Asesor Ing. Enrique Luján Silva por dirigir, guiar y proporcionar su tiempo para culminar la presente tesis. Agradezco también al Ing. Elvis Guzmán, representante del Sistema Consolid, por su gran apoyo y orientación durante el desarrollo de nuestra tesis.

Br. Karen Natali Huayanay Guzmán

AGRADECIMIENTO

Primero agradecer a mi asesor de tesis Ing. Enrique Luján por haberme brindado la oportunidad de compartir su capacidad y conocimiento científico y por haber otorgado su tiempo y paciencia para guiarme durante todo el desarrollo de la tesis.

Agradecer a la Universidad Privada Antenor Orrego por haberme abierto sus puertas en su centro científico; así como también a todos los ingenieros que me brindaron sus conocimientos y su apoyo para ser un buen profesional.

Br. Mario José Mendoza Abramonte

RESUMEN

Uno de los principales problemas que afectan a la ciudad de Chulucanas es la polución que genera el tránsito vehicular, debido a la presencia de material fino con presencia de arcillas y limos, a esto se adiciona las precipitaciones generadas en los meses de verano, afectando la transitabilidad y salud de los pobladores del sector comprendido entre C.P. Batanes y C.P. San Pedro. El objetivo principal es estudiar la estabilización de suelos para fines de mejoramiento aplicando el Sistema Consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura. Se realizó el estudio geológico, estudio geotécnico determinando la muestra más desfavorable C01, se obtuvo un suelo tipo MH limo de alta plasticidad con arena, según SUCS; LL de 55.8, LP de 33.8, IP de 22, contenido de humedad 9.92%, máxima densidad seca 1.782 g/cm³, humedad óptima 10.7%, CBR de 3.3 y 5.6 al 95%, 100%, respectivamente. En el ensayo de ascenso capilar se realizaron 05 probetas con diferentes dosificaciones de Sistema Consolid, el resultado fue un suelo impermeable, se realizó el ensayo proctor modificado y CBR con 04 dosificaciones diferentes, la muestra 01 con CONSOLID 444 al 0.045% y SOLIDRY al 0.5%, muestra 02 con CONSOLID 444 al 0.045% y SOLIDRY al 1.0%, muestra 03 con CONSOLID 444 al 0.045% y SOLIDRY al 1.5%, muestra 04 con CONSOLID 444 al 0.045% y SOLIDRY al 2.0%, obteniendo como dosificación óptima la muestra 04 con valores de máxima densidad seca de 1.870 g/cm³, humedad óptima de 11.1%, CBR de 23.5 y 28.2 al 95 y 100%, respectivamente. Se concluye que la estabilización con Sistema Consolid aumenta considerablemente la máxima densidad seca y CBR.

Palabras claves: Estabilización, Suelos, Sistema Consolid

ABSTRACT

One of the main problems affecting the city of Chulucanas is the pollution generated by vehicular traffic, due to the presence of fine material with the presence of clay and silt, in addition to the rainfall generated in the summer months, affecting the trafficability and health of the inhabitants of the sector between Batanes C.P. and San Pedro C.P. The main objective is to study soil stabilization for improvement purposes by applying the Consolid System in the section between Batanes C.P. and San Pedro C.P., province of Morropón, department of Piura. The geological study was carried out, geotechnical study determining the most unfavorable sample C01, a soil type MH silt of high plasticity with sand was obtained, according to SUCS; LL of 55.8, LP of 33.8, IP of 22, moisture content 9.92%, maximum dry density 1.782 g/cm³, optimum moisture 10.7%, CBR of 3.3 and 5.6 at 95%, 100%, respectively. In the capillary rise test, 05 specimens were made with different dosages of Consolid System, the result was an impermeable soil, the modified proctor and CBR test was performed with 04 different dosages, sample 01 with CONSOLID 444 at 0.045% and SOLIDRY at 0.5%, sample 02 with CONSOLID 444 at 0. 045% and SOLIDRY at 1.0%, sample 03 with CONSOLID 444 at 0.045% and SOLIDRY at 1.5%, sample 04 with CONSOLID 444 at 0.045% and SOLIDRY at 2.0%, obtaining as optimum dosage the sample 04 with maximum dry density values of 1.870 g/cm³, optimum humidity of 11.1%, CBR of 23.5 and 28.2 at 95 and 100%, respectively. It is concluded that stabilization with the Consolid System considerably increases the maximum dry density and CBR.

Keywords: Stabilization, Soils, Consolid System

PRESENTACIÓN

Estimados señores miembros del jurado:

En cumplimiento con lo establecido el Reglamento General de Grados y Títulos de la Universidad Privada Antenor Orrego, para obtener el título profesional de Ingeniero Civil, se emite el Informe de Investigación titulado "Estudio de estabilización de suelos para fines de mejoramiento aplicando el Sistema Consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura", con la firmeza y certeza de lograr una evaluación justa y dictamen.

Atentamente,

Piura, Julio del 2022.

Br. Huayanay Guzmán, Karen Natalí

Br. Mendoza Abramonte, Mario José

ÍNDICE

DEDIC	CATORIA	4
AGRA	ADECIMIENTO	7
RESU	MEN	g
ABST	RACT	10
PRES	ENTACIÓN	11
ÍNDIC	E DE TABLAS	13
ÍNDIC	E DE FIGURAS	15
I. IN	NTRODUCCIÓN	17
1.1.	Problema de investigación	
1.2.	Objetivos	24
1.3.	Justificación del estudio	25
II. M	IARCO DE REFERENCIA	26
2.1.	Antecedentes del estudio	26
2.2.	Marco teórico	28
2.3.	Marco conceptual	35
2.4.	Sistema de hipótesis	37
III.	METODOLOGÍA EMPLEADA	39
3.1.	Tipo y nivel de investigación	39
3.2.	Población y muestra de estudio	39
3.3.	Diseño de investigación	39
3.4.	Técnicas e instrumentos de investigación	41
3.5.	Procesamiento y análisis de datos	41
IV.	PRESENTACIÓN DE RESULTADOS	66
4.1.	Propuesta de investigación	66
4.2.	Análisis e interpretación de resultados	66
V.	DISCUSIÓN DE LOS RESULTADOS	79
CONC	CLUSIONES	83
RECO	MENDACIONES	84
REFE	RENCIAS BIBLIOGRÁFICAS	86
ΔNFX	ros	80

ÍNDICE DE TABLAS

Tabla 1 Ubicación de coordenadas geográficas GMS	22
Tabla 2 Coordenadas geográficas del tramo de investigación	23
Tabla 3 Operacionalización de variables	38
Tabla 4 Tamices de malla cuadrada	46
Tabla 5 Relación de tamices y sus aberturas	47
Tabla 6 Número de golpes y factor para límite líquido	51
Tabla 7 Estimados de precisión	53
Tabla 8 Lecturas de penetraciones	63
Tabla 9 Cuadro resumen de porcentajes que pasan por tamices	66
Tabla 10 Cuadro resumen de límites de Atterberg	66
Tabla 11 Cuadro resumen de contenido de humedad	67
Tabla 12 Cuadro resumen de clasificación SUCS	67
Tabla 13 Cuadro resumen de clasificación AASHTO	68
Tabla 14 Cuadro resumen de ensayo proctor modificado de las muestras inalteradas	68
Tabla 15 Cuadro resumen de ensayo CBR de muestras inalteradas	69
Tabla 16 Cuadro resumen de los ensayos de caracterización del suelo de las muestras inalteradas	70
Tabla 17 Resultados de los ensayos de ascension capilar de la muestra C01	71
Tabla 18 Muestra 1: incorporando 0.045% CONSOLID 444 (formulación líquida) + 0.5 % SOLIDRY (formulación sólida)	72
Tabla 19 Muestra 2: incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.0 %	70
SOLIDRY (formulación sólida)	12
Tabla 20 Muestra 3: incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.5 % SOLIDRY (formulación sólida)	72
Tabla 21 Muestra 4: incorporando 0.045% CONSOLID 444 (formulación líquida) + 2.0 % SOLIDRY (formulación sólida)	72

Tabla 22 Cuadro resumen de resultados de proctor modificado con muestras	
estabilizadas con Sistema Consolid, en diferentes dosificaciones	.73
Tabla 23 Muestra 1: incorporando 0.045% CONSOLID 444 (formulación líquida) + 0.5 %SOLIDRY (formulación sólida)	.73
Tabla 24 Muestra 2: incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.0 % SOLIDRY (formulación sólida)	.74
Tabla 25 Muestra 3: incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.5 % SOLIDRY (formulación sólida)	.74
Tabla 26 Muestra 4: incorporando 0.045% CONSOLID 444 (formulación líquida) + 2.0 % SOLIDRY (formulación sólida)	.74
Tabla 27 CBR (C01) estabilizado con aditivo	.75
Tabla 28 Cuadro resumen de proctor y CBR (C01) estabilizada con Sistema Consolid	.75
Tabla 29 Material patrón: muestra C01 sin alteración	.76
Tabla 30 Muestra estabilizada en diferentes dosificaciones: muestra C01 adicionando aditivo en diferentes dosificaciones M01, M02, M03 y M04	.77
Tabla 31 Comparación del material patrón con muestra M01, incorporando 0.045%CONSOLID 444 (formulación líquida) + 0.5 % SOLIDRY (formulación sólida)	.77
Tabla 32 Comparación del material patrón con muestra M02, incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.0 % SOLIDRY (formulación sólida)	.78
Tabla 33 Comparación del material patrón con muestra M03, incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.5 % SOLIDRY (formulación sólida)	.78
Tabla 34 Comparación del material patrón con muestra M04, incorporando 0.045%CONSOLID 444 (formulación líquida) + 2.0 % SOLIDRY (formulación sólida)	.78
Tabla 35 Comparación de la muestra natural C04 con muestras estabilizadas con Sistema Consolid M01, M02, M03 y M04.)	

ÍNDICE DE FIGURAS

Figura 1. Polución en tramo Batanes - San Pedro	19
Figura 2. Polución en tramo Batanes - San Pedro	19
Figura 3. Polución generada por el paso de vehículos en tramo Batanes - San Pedro)20
Figura 4. Estado actual del tramo Batanes – San Pedro	20
Figura 5. Material suelto en tramo Batanes – San Pedro	21
Figura 6. Tramo de estudio	22
Figura 7. Geología de Batanes – San Pedro (Distrito de Chulucanas)	44
Figura 8. Columna Geológica de la zona de estudio	44
Figura 10. Signos Convencionales	45
Figura 11. Aparato manual para límite líquido	49
Figura 12. Equipo CBR de suelos	60
Figura 13. Determinación del valor de la relación de soporte en el laboratorio	62
Figura 14. Curva de cálculo de índice de CBR	64
Figura 15. Gráfico representativo de ascensión capilar (cm) VS tiempo (hrs)	71
Figura 16. Clasificación SUCS de tramo de estudio	79
Figura 18. Estado del tramo Batanes – San Pedro	175
Figura 19. Punto final del tramo – San Pedro	175
Figura 20. Recorrido de tramo de investigación	176
Figura 21. Excavación de calicata C01	176
Figura 22. Extracción de muestra C03	177
Figura 23. Excavación de calicata C04	177
Figura 24. Extracción de muestra C04	178
Figura 25. Excavación de calicata C06	178
Figura 26. Excavación de calicata C08	179
Figura 27. Tamizado de muestras de suelo	179

Figura 28. Peso de muestra para ensayo granulométrico	.180
Figura 29. Realización de ensayo de límite líquido (copa de Casagrande)	.180
Figura 30. Adición de agua destilada para elaboración de límite plástico	.181
Figura 31. Elaboración de barritas cilíndricas sobre superficie de vidrio	.181
Figura 32. Tamizado de muestra para ensayo de proctor modificado	.182
Figura 33. Adición de agua destilada para ensayo de proctor modificado	.182
Figura 34. Ensayo de ascenso capilar del material natural – Probeta 01	.183
Figura 35. Ensayo de ascenso capilar del material natural, probeta 02 y probeta 03	.183
Figura 36. Ensayo de ascenso capilar del material natural, probeta 04 y probeta 05	.184
Figura 37. Componentes de Sistema Consolid: CONSOLID 444 y SOLIDRY	.184
Figura 38. Peso de componente líquido (CONSOLID 444) para adicionar a las muestras	.185
Figura 39. Peso de componente líquido (CONSOLID 444) para estabilizar muestras	.185
Figura 40. Peso de formulación sólida (SOLIDRY) para estabilizar muestras	.186
Figura 41. Adición de formulación sólida (SOLIDRY) para estabilizar muestras	.186
Figura 42. Muestra C01 estabilizada con 04 dosificaciones diferentes	.187
Figura 43. Ensayo de proctor modificado de la muestra estabilizada	.187
Figura 44. Enrasado de material compactado de la muestra estabilizada	.188
Figura 45. Ensayo de proctor modificado de la muestra estabilizada	.188
Figura 46. Desmolde de muestras	.189
Figura 47. Ensayo de CBR de muestra de suelo con Sistema Consolid (Inmersión de	
moldes)	.189
Figura 48. Ensayo de CBR con Sistema Consolid (Determinación de deformaciones)	.190

I. INTRODUCCIÓN

1.1. Problema de investigación

1.1.1. Realidad Problemática

Uno de los principales problemas que afectan a la ciudad de Chulucanas es la polución que genera el tránsito vehicular, debido a la alta presencia de material fino, la ciudad de Chulucanas y alrededores se caracteriza por poseer suelos arcillosos, esto afecta directamente la salud de los pobladores y transitabilidad en el sector comprendido entre centro poblado Batanes y centro poblado San Pedro.

Con el pasar del tiempo, la necesidad de transitabilidad ha aumentado de forma paralela al crecimiento económico, esto genera el uso de vehículos de tránsito. La necesidad del intercambio de comercio, según las actividades económicas que se desarrollan en determinadas zonas ha ocasionado el aumento de vehículos de carga, para ello se requiere implementar proyectos para el uso de vías que mejoren la calidad del tránsito, lo cual implica realizar un minucioso estudio de suelos y su estabilización para fines de mejoramiento debido a los agregados que prevalecen en esta zona.

El tramo de Batanes a San Pedro se encuentra a nivel de trocha carrozable y en estado deteriorado debido a los episodios de precipitaciones excepcionales de alta intensidad en los meses de diciembre del año 2016 hasta marzo del año 2017, existen algunos tramos que se encuentran en condiciones desfavorables afectando la transitabilidad, generando costos de mantenimiento vehicular, y dificultad para el tránsito de vehículos de carga de productos de primera necesidad y afectando el comercio en general.

El centro poblado de Batanes se encuentra en los alrededores de la ciudad de Chulucanas, este lugar se caracteriza por estar en un auge y crecimiento económico significativo. El vínculo comercial y de actividades económicas con la Ciudad de San Pedro es relevante, ya que ambos centros poblados se dedican a la agricultura y ganadería y son principales proveedores de alimentos y productos para la ciudad de Chulucanas y alrededores.

El centro poblado de San Pedro se encuentra ubicado a 12.4 Km del centro poblado de Batanes, ambos se unen mediante la carretera Batanes – San Pedro, la cual se encuentra a nivel de trocha carrozable con anchos variables entre 4m y 6m. Por dicha carretera transitan vehículos menores (motos y autos), vehículos pesados de transporte de alimentos y diversos tipos de materiales. Debido a la pandemia mundial esta vía sirvió como acceso estratégico de menor tiempo entre ambos centros poblados y la ciudad de Chulucanas, siendo el principal problema la polución, es por ello que, se propone alternativas de mejoramiento de suelos a través de la estabilización con materiales adecuados, de fácil aplicación, mínimo mantenimiento, y no contaminantes, como lo es el Sistema Consolid.

El Sistema Consolid es un sistema de productos que en diversas combinaciones puede generar una envolvente de suelos, incluyendo para suelos no plásticos o de baja plasticidad. Se tiene una referencia del tipo de suelos en la cercanía del proyecto de investigación, el estudio de suelos realizado al proyecto "Rehabilitación de la infraestructura y dotación de mobiliario y equipamiento en la I.E. N°14620 Señor de la Divina Misericordia, centro poblado de Batanes, distrito de Chulucanas, Provincia de Morropón, departamento de Piura.

El estudio de suelos determina que se presentan suelos de baja plasticidad y bajo potencial de expansión. El Sistema Consolid no actúa como ligante ni reacciona como los componentes del suelo desde los suelos no plásticos hasta los altamente plásticos, de esta manera mejora las propiedades mecánicas y físicas del suelo acelerando la atracción de partículas y su compactación.

Es por ello que se toma como referencia esta información para dar a conocer la composición del suelo en cercanía al desarrollo del proyecto, determinando así que este tipo de suelo elevara su capacidad de estabilidad con la adición de Consolid, por ser un compuesto que se adapta a cualquier condición de suelo.

Figura 1. Polución en tramo Batanes - San Pedro

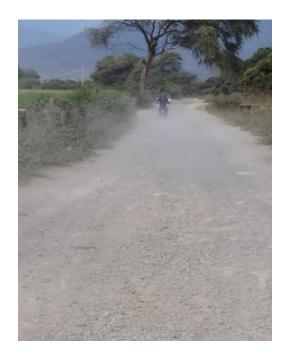


Figura 2. Polución en tramo Batanes - San Pedro

Nota. Elaboración propia (2022).

Figura 3. Polución generada por el paso de vehículos en tramo Batanes - San Pedro

Figura 4. Estado actual del tramo Batanes – San Pedro

Nota. Elaboración propia (2022).

Figura 5. Material suelto en tramo Batanes – San Pedro

1.1.1.1. Delimitación del problema

La ubicación geográfica donde se realizará la investigación será en el distrito de Chulucanas, provincia de Morropón, departamento de Piura. Se encuentra ubicado en una elevación de 95 msnm a 49 kilómetros al este de la ciudad de Piura.

La ciudad de Chulucanas se encuentra en las primeras estribaciones andinas de la sierra piurana y es parte de la yunga del bosque seco tropical, registra su lado más ancho con 130 Km. Su superficie territorial es de 1780 Km.

Limites:

- Por el norte: con el Distrito de Frías (Ayabaca) y Tambogrande.
- Por el sur: con el Distrito de Santo Domingo y Morropón.
- Por el este: con el Distrito de Buenos Aires, La Matanza y Salitral (Morropón).
- Por el Oeste: con el Distrito de Piura, Catacaos y Castilla (Piura).

Región: Piura

Provincia: Morropón

Distrito: Chulucanas

Región geográfica: Costa

Altitud: 95 m.s.n.m.

Área: Rural

Tabla 1 *Ubicación de coordenadas geográficas GMS*

Latitud	Longitud	Altitud
5°5'33" Sur	80°9.75' Oeste	95 msnm

Nota. Google Earth

Talandfacas

PUNTO 3

PUNTO 3

Charanal

PUNTO 2

PUNTO 2

PUNTO 2

PUNTO 2

PUNTO 2

PUNTO 2

PONTO 3

A PUNTO 6

PUNTO 2

PONTO 2

PONTO 3

A PUNTO 6

PUNTO 2

PONTO 3

A PUNTO 6

PUNTO 2

PONTO 3

A PUNTO 6

PUNTO 2

PONTO 6

PUNTO 2

PONTO 6

Figura 6. Tramo de estudio

Nota. Elaboración propia (2022).

 Tabla 2

 Coordenadas geográficas del tramo de investigación

PTO	ESTE	NORTE
INICIO	598576.00 m E	9431633.00 m S
PUNTO 1	599378.00 m E	9432349.00 m S
PUNTO 2	600393.00 m E	9433263.00 m S
PUNTO 3	601556.00 m E	9433689.00 m S
PUNTO 4	602788.00 m E	9433984.00 m S
PUNTO 5	602933.00 m E	9433430.00 m S
PUNTO 6	603701.00 m E	9433510.00 m S
PUNTO 7	604488.00 m E	9433980.00 m S
PUNTO 8	605313.00 m E	9434594.00 m S
PUNTO 9	606220.00 m E	9435399.00 m S
PUNTO 10	606804.00 m E	9436311.00 m S
SAN PEDRO	607068.00 m E	9436525.00 m S

1.1.1.2. Descripción geográfica de Chulucanas

El distrito de Chulucanas se encuentra ubicado en la provincia de Morropón y pertenece al departamento de Piura. Se encuentra ubicado en una elevación de 95 con coordenadas 5°5'33" Sur (Latitud), 80°9.75' Oeste (Longitud y 92 msnm (Altitud). Las temperaturas oscilan entre 38°C (Máxima) y 18°C (Mínima) con Humedades de 17 a 18%, se encuentra a 45 minutos de la ciudad de Piura.

Clima

De acuerdo a la ubicación geográfica de Chulucanas, tiene un clima tropical, cálido y seco, con precipitaciones moderadas en los meses de enero a marzo (verano), alcanzando una precipitación pluvial acumulada de 201 mm. al año. Tiene temperaturas máximas alcanzadas de entre 37.6°C hasta 40°C, temperaturas mininas de entre 16.5°C y 21.2°C y una temperatura promedio de anual de 25°C. La llegada del "El Niño costero" incrementa considerablemente el valor normal de precipitaciones,

esto va a depender del grado de intensidad en los cambios y anomalías en la temperatura superficial del mar.

1.1.2. Enunciado del problema

¿Cuál es el estudio de estabilización de suelos para fines de mejoramiento aplicando el Sistema Consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura?

1.2. Objetivos

1.2.1. Objetivo General

Estudiar la estabilización de suelos para fines de mejoramiento aplicando el Sistema Consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura.

1.2.2. Objetivos Específicos

- Realizar el estudio geológico del tramo comprendido entre el C.P. Batanes y
 C.P. San Pedro, provincia de Morropón, departamento de Piura.
- Realizar el estudio de mecánica de suelos del tramo comprendido entre C.P.
 Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura.
- Determinar las propiedades físicas del suelo del tramo comprendido entre C.P.
 Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura.
- Establecer la dosificación óptima del suelo estabilizado con el Sistema Consolid mediante la realización de ensayos físicos y mecánicos.
- Evaluar técnica y comparativamente el material patrón y la mezcla estabilizada.

1.3. Justificación del estudio

Esta investigación se justifica teóricamente porque se realiza con el fin de aportar al conocimiento existente sobre la estabilización de suelos con Sistema Consolid a través de los resultados de laboratorio, ya que, si estos son favorables, el estudio de suelos podría ser utilizado para futuros proyectos en el tramo de estudio y ser extrapolados a otras áreas del país o a nivel global con condiciones climáticas y suelos similares.

Se justifica metodológicamente, ya que se utilizará un tipo de investigación, a través de ensayos de laboratorio que permitirá contrastar los resultados de un suelo de la zona en condiciones naturales con otro aplicando el Sistema Consolid.

Esta investigación se justifica socialmente porque contribuye al desarrollo económico, de manera que, disminuye la polución mejorando la transitabilidad vehicular para la comercialización de los productos agropecuarios y ganaderos a los mercados locales y nacionales, aumenta el desarrollo socioeconómico y cultural de todo el distrito, mejora la calidad de vida de la población de diversos caseríos de Chulucanas, disminuye la pérdida 8 de producción agrícola por no ser trasladada a mercados de expendio, se reduce los precios de producción de los productos agrícolas.

Desde la perspectiva práctica, este proyecto es una iniciativa con el fin de estabilizar el suelo para fines de mejoramiento con materiales propios de la zona, se propone realizar el estudio de suelos con la finalidad de estabilizarlo aplicando el Sistema Consolid, esto se traduce en duración (aumento de vida útil), comodidad y seguridad para los pobladores que se verían beneficiados en todo su tramo de acción.

II. MARCO DE REFERENCIA

2.1. Antecedentes del estudio

2.1.1. Internacionales

Julián y Prado (2012), en su investigación utilizaron el Sistema Consolid para poder estabilizar la subrasante de la vía Cuicocha – Apuela de la provincia de Imbabura. Para este estudio las muestras se recolectaron en un tramo de 6 Km, para su posterior análisis, a profundidades de 0.50, 1.00, 1.50 m. Entre los ensayos que se realizaron se encuentra: CBR, clasificación de suelos, ensayo de compactación. Se realizaron ensayos en una muestra del terreno natural y otra con la aplicación del Sistema Consolid a fin determinar si las características del nivel de subrasante presentan mejora con la adición del estabilizador Consolid.

Los resultados indicaron un descenso en el índice plástico con el estabilizador Consolid, en tanto la densidad seca máxima no se encontró ninguna variación. También se pudo observar que la cantidad agua absorbida en las probetas adicionando el Sistema Consolid tiende a ser inferior al suelo natural sin el estabilizador.

Concluyeron que el Sistema Consolid afecta la impermeabilización del suelo y la retención de humedad de compactación, no hay variación en la humedad óptima entre el suelo in situ y el suelo con la aplicación del Sistema Consolid. En cuanto al CBR los suelos finos presentan mayor aumento de resistencia, llegando a ser seis veces su CBR inicial.

Herrera (2016), en 2007 el Instituto de Recursos Hidráulicos de Cuba realizó ensayos con secciones de 6 m. x 1,30 m. x 0,20 m. en zanjas de relleno para alcantarillado en suelos inadecuados para obras viales.

Se realizaron pruebas preliminares con el fin de verificar los aditivos estabilizantes individualmente y en combinación según lo propuesto por el sistema. Para ello se procesaron cinco probetas: probeta 1 con la adición de SOLIDRY, probeta 2 con la adición de CONSOLID, probeta 3 de suelo sin tratar. En las tres primeras muestras se usó una arcilla plástica negra, en la cuarta muestra se adicionó SOLIDRY

y arcilla negra altamente plástica; la muestra 5 se le adicionó el CONSOLID 444 y SOLIDRY usando una arcilla roja marrón impermeable. Los resultados indicaron que las muestras 1, 2 y 4 donde los aditivos se usaron por separado, mostraron contracciones muy notorias en toda su esbeltez. Se concluye que los aditivos realizan una mejor función como estabilizador de suelos, en combinación (Herrera, 2016).

Se realizaron análisis de CBR, densidad y permeabilidad en diferentes suelos tratados con el estabilizador Consolid a fin de verificar su efecto, ya que dichos suelos no son aptos para la realización de carreras (Herrera, 2016).

El suelo con el Sistema Consolid aumenta su CBR, aumenta el grado de impermeabiliza e incrementa su capacidad admisible, concluyendo que con la adición del Sistema Consolid se mejora las condiciones de suelos de Cuba (Herrera, 2016).

2.1.2. Nacionales

Huamán y Rojas (2019) analizaron la posibilidad de mejorar la base granular existente en la pista de aterrizaje de base aérea Capitán FAP Leonardo Alvariño Herr, que se encuentra en Chanchamayo, para llevar a cabo esta investigación la base granular fue reutilizada, esta se encontraba dañada por diferentes factores, teniendo en cuenta lo antes mencionado, se usó el Sistema Consolid, este consiste en la mezcla de un aditivo sólido denominado Solidry y un aditivo líquido (Consolid 444). Para llevar a cabo esto se realizaron 4 diseños de dosificación teniendo en cuenta un porcentaje de aditivo (0.5%, 0.75%, 1% y 1.25%) con respecto a la máxima densidad seca de la base granular. Se recolectaron muestras, las cuales se les realizó ensayos de mecánica de suelos (Análisis granulométrico, Proctor Modificado, Ensayo de Relación de Soporte California, Limites de Atterberg). Luego de haber realizado todos los ensayos se obtuvieron resultados de las 4 dosificaciones, donde se reveló que el CBR incrementó en porcentajes mayores a 160%. En este trabajo de tesis se concluyó que la dosificación que mejoro más la base granular fue la de 1%, obteniendo incrementos del CBR hasta un 180% y que el Índice de Plasticidad disminuyó en un porcentaje mayor a 60%.

Flores (2021), en su investigación "Evaluación de las propiedades del suelo a nivel de sub rasante estabilizando con Sistema Consolid, en la carretera AP 104 Andahuaylas - Apurímac, 2021", se recogieron datos de expedientes técnicos y de investigaciones realizadas a nivel de pregrado, para la obtención de los datos para esta investigación se tuvo que procesar por una interpolación, luego de obtener los resultados se realizó una evaluación a fin de conocer el efecto en las propiedades del suelo estabilizado. Se ejecutó el desarrollo de los ensayos de mecánica de suelos (Granulometría, Contenido de humedad, Límite Líquido y Límite Plástico, Proctor Modificado y CBR). Teniendo en cuenta los resultados obtenidos, se concluyó que hubo un efecto favorable de las propiedades del suelo a nivel de la subrasante, a fin de utilizarlo como estabilizador en suelos para el diseño de carreteras.

Díaz (2018) en su estudio empleó el Sistema Consolid como estabilizador para mejorar las propiedades del suelo en camino vecinal Yántalo, se optó por hacer 9 calicatas a una profundidad de 1.5 m, la distancia entre calicata y calicata es de medio kilómetro, para los ensayos que se realizaron se tomaron las muestras que se encontraban en forma representativa y uniforme, al mismo modo se iban registrando las calicatas efectuadas, donde se anotó las características fundamentales de los tipos de estratos. Los ensayos de mecánica de suelos que se realizaron se dividen en dos grupos los ensayos estándar (Humedad, granulometría, Límite Líquido y Plástico); y los ensayos especiales (Humedad, CBR, densidad (proctor modificado). Se encontró que a 90% de los suelos en el lugar de estudio son arcillosos, las pruebas de laboratorio muestran que las arcillas tienen un índice de plasticidad superior al 85%. Se concluyó que la dosificación más óptima para este tipo de suelo debe ser de 0.007 litros de Consolid por metro cuadrado.

2.2. Marco teórico

2.2.1. Mejoramiento de suelos

Mejorar los suelos se refiere a la excavación del terreno por debajo de la subrasante, el reemplazo de manera parcial o total de los materiales, estos deben cumplir ciertas características para ser aprobados, se continúa con el proceso de conformación y acomodación de los materiales para luego ser compactados. Las

dimensiones, alineamientos y pendientes dependen del proyecto (Manual de Carreteras, 2013).

También se puede realizar una opción de mejora del suelo a través de diferentes estabilizadores, según indique el proyecto, los procedimientos y condiciones dependen del tipo de estabilizadores que se utilicen (Manual de Carreteras, 2013).

Según el manual de carreteras, 2013 los trabajos de mejoramiento se efectúan según el siguiente procedimiento:

- Escarificación: se realiza en zonas establecidas en el proyecto, con un rango de profundidad mayor a 15 cm, y menor a 30 cm. Si la profundidad supera los 30 cm. se debe agregar un nuevo material, el cual debe estar estratificado y compactado.
- Compactación: este método debe garantizar que se logre la compactación mínima requerida. De esta forma se elegirá la granulometría del material, el espesor de la capa, el tipo de máquina compactadora y la frecuencia de trabajo del equipo.

2.2.1.1. Clasificación

Según el Manual de Carreteras (2013), se clasifica de la siguiente manera:

Mejoramiento involucrando el suelo existente.

Para este tipo de mejora pueden surgir dos situaciones, mediante estabilización mecánica o combinación de suelos, estos se desglosan en el lugar de estudio y en la profundidad establecidos en los planos del proyecto.

Mejoramiento empleando únicamente material adicionado.

Cuando el proyecto indique la realización del mejoramiento de suelo con la adición de materiales que mejoren sus propiedades, pueden ocurrir dos escenarios, que la capa se construya directamente sobre el terreno natural o que el terreno deba ser excavado como indica el proyecto, con la adición del material a utilizar.

En el primer caso, el suelo se debe escarificar, conformar y compactar a la densidad requerida en superficies de terraplén, con un espesor de 15 cm. Cuando el suelo de soporte está preparado se colocan los materiales, para garantizar el grado de compactación y nivel del subrasante requerida, por medio de los equipos de compactación. Para el segundo caso se remueve por completo el suelo existente y se realiza de acuerdo al espesor indicado en los planos del proyecto, una vez alcanzado el nivel de excavación, conformación y compactación del suelo, se realiza el posicionamiento y compactación en capas de material hasta alcanzar el nivel requerido.

Mejoramiento adicionando únicamente material manufacturado.

Se refiere al mejoramiento de subrasante con geotextiles. Los procedimientos y características dependen de cada proyecto (Manual de Carreteras, 2013).

2.2.2. Estabilización de suelos

En la estabilización de suelo y taludes, aquellos suelos que necesitan estabilizarse tienen baja capacidad portante, de aquellos que tienen deformaciones considerables, debido a la responsabilidad asumida por el riesgo de la vida humana y el medio ambiente (Norma CE.020).

2.2.2.1. Estabilización de suelos mediante métodos guímicos

Se aplica para las siguientes situaciones:

- No cumple con las características mínimas admisibles para justificar su uso en obras de ingeniería civil.
- No puede utilizarse en estados naturales.

No se puede eliminar o sustituir por otro.

2.2.2.2. Aditivo estabilizador

Se emplea en el tratamiento de superficies de suelos que posee material orgánico o de tamaño de partículas muy finas.

El aditivo es capaz de unirse de manera homogénea con el suelo y realizar el proceso de curado, en función de las especificaciones técnicas intrínsecas de cada producto (Norma CE.020).

2.2.2.3. Estabilización de suelos mediante métodos físicos

Se aplica a través de equipos mecánicos y este será determinado por un especialista responsable (Norma CE.020).

2.2.2.4. Estabilización por compactación

Este método se utiliza en proyectos donde el recurso principal es el suelo.

El efecto debe generar:

- Se produce un crecimiento de la resistencia por cizalladura para aumentar la condición estable del suelo.
- Reducir la compresión de manera que se disminuye los asentamientos.
- Reducir la relación de vacíos para aminorar la permeabilidad, potencial de expansión, reducción o riesgo por congelamiento (Norma CE.020).

2.2.3. Suelos

Se denomina como una fina membrana delgada sobre la superficie terrestre, que nace de la disgregación física y química de rocas y de residuos orgánicos de los seres vivos. Está conformado por material mineral ya sea arena, limo y arcillas, los cuales de acuerdo a su proporción se determina sus propiedades físico mecánicas. (Crespo, 2004).

2.2.3.1. Ensayos de suelos

Características del suelo

Antes de la evaluación de las propiedades del comportamiento del suelo se deben determinar sus características.

Según el Manual de carreteras: Suelos, geología, geotecnia y pavimentos. Sección suelos y pavimentos (2014) los ensayos a realizar para la caracterización del suelo son los siguientes:

Análisis granulométrico por Tamizado ASTM D-422, MTC E 107

La finalidad del estudio granulométrico es distribuir cuantitativamente las partículas del suelo de acuerdo a su tamaño. La finalidad del ensayo es obtener la cantidad de suelo que pasan por los diversos tamices, desde el número de Tamiz empleado para este ensayo hasta el Tamiz 74 mm (Nº 200).

Límites de Consistencia

o Límite Líquido ASTM D-4318, MTC E 110

Es la cantidad de humedad representada en porcentaje donde el suelo se encuentra en su máxima capacidad entre los estados líquido y plástico.

Límite Plástico ASTM D-4318, MTC E 111

Es el contenido de agua expresado en porcentaje donde el suelo se encuentra en el límite entre el estado semisólido y el estado plástico, también se define como el mínimo porcentaje de agua para que el suelo no se resquebraje y sea trabajable (RAVINES,2010, p. 28).

En el laboratorio se expresa como la humedad más baja en el suelo, la cual permite realizar barritas de 3.2mm de

diámetro, girando la muestra de suelo con la mano y un área lisa (Vidrio esmerilado), sin tratar de desmoronar las barritas. Este ensayo es utilizado para la clasificación y caracterización de suelos de partículas finas (según clasificación de suelos SUCS Y AASHTO), y para determinar la granulometría de materiales de construcción.

Índice plástico: Determina el nivel de plasticidad del suelo. Si el IP > 10, indica un alto índice, esto quiere decir que el suelo es más plástico e inestable. El IP indica la cantidad de agua que se puede concentrar en un suelo antes de mezclarse en alguna solución (Ravines,2010).

Contenido de Humedad ASTM D-2216, MTC E 108

Se entiende como la proporción expresada en porcentaje del peso de agua de las partículas del suelo y de las partículas sólidas. El objetivo del estudio es determinar el volumen de agua que se pierde al colocarse en un horno a 110°C+/- 5°C por 24 horas, la diferencia entre el peso de agua de las partículas de suelo y el suelo seco en horno será igual al contenido de humedad del suelo.

Clasificación de suelos

Clasificación SUCS ASTM D-2487

Consiste en el reconocimiento de un suelo de acuerdo a sus características estructurales y plásticas, estas se agrupan en función de su comportamiento y uso como materiales de construcción.

Las partículas de grano grueso consideran las gravas (G) y arenas (S). Se consideran gravas a las partículas

gruesas que tienen un mayor porcentaje de fracción gruesa (que no pasa por Tamiz N° 200) y que es retenida en Tamiz N° 4, en cambio, las arenas tienen mayor fracción pasante por el Tamiz N° 4. Las gravas y arenas se dividen en cuatro grupos, de acuerdo a la cantidad, características de los finos y la estructura de la curva granulométrica.

Clasificación AASHTO M-145

El objetivo es clasificar al suelo en grupos, y depende de los resultados obtenidos en laboratorio, de granulometría, límite líquido e índice de plasticidad. La evaluación en cada grupo se hace mediante un "índice de grupo".

2.2.3.2. Ensayos especiales

California Bearing Ratio ASTM D-1883, MTC E 132

El objetivo del estudio es determinar el índice de resistencia del suelo. Por medio de este estudio se evalúa la resistencia de sub rasante, sub base y base, el resultado de CBR alcanzado forma parte de los varios métodos de diseño de pavimento flexible.

Proctor modificado ASTM D-1557, MTC E 115

Es el resultado de dividir la cantidad de agua y la densidad seca de un suelo (Curva de compactación).

2.2.4. Sistema Consolid

El Sistema Consolid se define como un sistema de alta tecnología cuya característica principal es que trabaja la compactación de un suelo en estado irreversible. El Sistema Consolid influye sobre la compactación y regula la humedad óptima del suelo, independiente de los cambios climáticos.

La aplicación del Sistema Consolid modifica los componentes del suelo estabilizando de manera definitiva su compactación (Manual CONSOLID, 2011).

Este sistema maneja una elevada importancia de la cantidad de agua en un suelo, regula el aumento de la humedad por capilaridad o licuación de suelos generado por precipitaciones. Entre sus ventajas tenemos que mejora las propiedades físico – mecánicas (aumenta el grado de compactación, aumenta la estabilidad, mejora la permeabilidad, aumenta el CBR) del suelo acelerando la atracción de partículas del suelo y el proceso de compactación (Afrin, 2019).

Los ensayos que se realizan a las muestras representativas según el protocolo de aplicación del Sistema Consolid son los siguientes:

2.2.4.1. Ensayo de ascensión capilar con carga constante de agua

Este ensayo permite medir el ascenso de agua durante un tiempo determinado, consiste en elaborar probetas de 10 cm (altura) y 5 cm (diámetro).

Se realizan probetas naturales y estabilizadas con diferentes dosificaciones para poder compararlas, estas se colocan en un recipiente de humedecimiento para luego verter agua de uno 1 a 3 cm de altura, se toman lecturas de ascenso capilar de hasta 96 horas y se grafica según las lecturas obtenidas.

2.2.4.2. California Bearing Ratio ASTM D-1883, MTC E 132

El objetivo del estudio es determinar el índice de resistencia del suelo. Por medio de este estudio se evalúa la resistencia de sub rasante, sub base y base, el resultado de CBR alcanzado forma parte de los varios métodos de diseño de pavimento flexible.

2.3. Marco conceptual

Definiciones de términos básicos:

✓ Subrasante

Es el suelo natural libre de vegetación y compactado que recibe al paquete estructural. Este material puede ser tanto granular como

afirmado, empedrados u otras carpetas granulares, seleccionados o cribados, producto de cortes y extracciones de canteras (Ravines, 2010).

✓ Capacidad de soporte

Está sometida a carga sobre unidad de área, las deformaciones generadas dependerán del tipo de suelo y del estado o condición en que se encuentre. (MTC, 2016).

✓ Carretera

Se define como una infraestructura o vía de transporte construida con la finalidad de generar una adecuada circulación de vehículos permitiendo el flujo continuo del tránsito, teniendo en cuenta el confort y seguridad de las personas (Gálvez y Vásquez, 2019).

✓ Suelo

Se define como una membrana delgada sobre la superficie terrestre compuesta de material proveniente de la descomposición y/o cambio físico y/o químico de las rocas, además de actividades de intervención de los seres vivos sobre la misma (Crespo, 2004).

✓ Estabilización de suelos

Hace referencia al mejoramiento de las propiedades físicas - mecánicas de un suelo a través de un proceso llamado compactación, que consiste en la reorganización de partículas que conforman el suelo, disminuyendo el volumen de vacíos y aumentando considerablemente su densidad (MTC, 2016).

✓ Estabilización química

Se define como la modificación de las propiedades físico – mecánicas de un suelo a través de la adición de un compuesto químico (MTC, 2016).

✓ Estabilizador de suelos

Producto químico, natural o sintético, que por su acción y/o combinación con el suelo, mejora una o más de sus propiedades de comportamiento (MTC, 2016).

✓ Arcillas

Conjunto de granos finos de tamaño menor a 2 µm (0,002 mm) como producto de la alteración física y química de rocas y minerales. Materia prima natural conformada por material de grano fino, que origina un comportamiento plástico al unirse con agua y generando endurecimiento al secarse o calentarse (Díaz y Torrecillas, 2002).

✓ Limos

Granos finos provenientes de roca o minerales, las dimensiones varían entre 0.02 y 0.002 mm (MTC, 2018).

✓ Trabajabilidad

Se refiere a la capacidad de mezclar el suelo de manera eficiente, además de su correcta colocación, enrasado y compactado (MTC, 2016).

2.4. Sistema de hipótesis

2.4.1. Hipótesis

El estudio de estabilización de suelos aplicando el Sistema Consolid mejorará las propiedades físicas y mecánicas del suelo del tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura.

2.4.2. Operacionalización de variables

Tabla 3 *Operacionalización de variables*

VARIABLES	DEFINICIÓN	DEFINICIÓN	DIMENSIONES	INDICADORES	INSTRUMENTOS
	CONCEPTUAL	OPERACIONAL		Granulometría	Ficha de recolección de datos, Software Excel.
Independiente: Estudio de estabilización de suelos	Es el mejoramiento de las propiedades físicas - mecánicas de un suelo a través de un proceso llamado compactación, que	Proceso de mejorar las		Límites de consistencia: - Límite líquido - Límite plástico - Límite de contracción	Ficha de recolección de datos, Software Excel.
	consiste en la reorganización de	propiedades físicas y/o mecánicas de un suelo a través de procedimientos	Estudio de mecánica de suelos	Clasificación SUCS	Ficha de recolección de datos, Software Excel.
	partículas que conforman el suelo, disminuyendo el volumen de vacíos y aumentando considerablemente su densidad. (RAVINES, 2010)	mecánicos y/o físico - químicos.	suelos	Clasificación AASHTO M- 145	Ficha de recolección de datos, Software Excel.
				Humedad	Ficha de recolección de datos, Software Excel.
				CBR	Ficha de recolección de datos, Software Excel.
				Proctor Modificado	Ficha de recolección de datos, Software Excel.
	Sistema de alta tecnología cuya característica principal es que trabaja la compactación de un suelo en estado irreversible. El			Ascenso capilar	Ficha de recolección de datos, Software Excel.
Dependiente: Sistema consolid	sistema Consolid influye sobre la compactación y regula la humedad óptima del suelo, independiente de los cambios climáticos. El sistema CONSOLID se fundamenta en la mezcla y aplicación de dos componentes: el Consolid 444 (componente líquido) y el Solidry (componente en polvo).(Consolid Productos Viales, 2016).	Es un sistema de productos, donde cada uno actúa produciendo efectos diferentes, en circunstancias diferentes y suelos diferentes.	Estudio de propiedades químicas	CBR	Ficha de recolección de datos, Software Excel.

Nota. Elaboración propia (2022).

III. METODOLOGÍA EMPLEADA

3.1. Tipo y nivel de investigación

3.1.1. Tipo de investigación

Según enfoque: Cuantitativo.

Según finalidad: Aplicada.

Según nivel: Descriptiva.

Según temporalidad: Trasversal.

3.1.2. Nivel de investigación

Descriptiva.

3.2. Población y muestra de estudio

3.2.1. Población

Carretera Batanes – San Pedro.

3.2.2. Muestra

Conformada por el tramo que inicia en el centro poblado de Batanes y termina en centro poblado San Pedro, provincia de Morropón, departamento de Piura, que tiene una longitud de 12.4 Km.

3.3. Diseño de investigación

- En primer lugar, se realiza un análisis del estado actual del tramo de estudio, debido a que esto afecta considerablemente la transitabilidad y la salud de los pobladores, con el análisis realizado se procede a plantear las posibles causas.
- Posteriormente se procede a revisar antecedentes donde se haya aplicado el Sistema Consolid como mejoramiento para la estabilización de suelos.
- Se revisan diversos informes técnicos para obtener el alcance del estudio geológico de la zona de estudio.

- Se revisa el manual de ensayos de materiales para extracción de muestras de suelos y el manual de Sistema Consolid.
- Se realiza 01 calicata por Km. a una profundidad de 1.5 m. respecto al nivel de subrasante.
- La cantidad de muestras extraídas son necesarias para realizar los ensayos en laboratorio, sin alterarlas.
- Se procede a realizar los ensayos en laboratorio: análisis granulométrico por Tamizado, límites de Atterberg, contenido de humedad, clasificación de suelos (SUCS, AASHTO), CBR, proctor modificado.
- Una vez obtenidos los resultados, se evalúa la muestra más desfavorable y se realiza el ensayo de ascenso capilar. En el ensayo de ascenso capilar se realizan 5 probetas con material natural y diferentes dosificaciones de formulación líquida y formulación sólida, las mismas que se utilizarán para los ensayos proctor y CBR.
- Se realizan los ensayos proctor y CBR de la muestra más desfavorable, incorporando estabilizante con las siguientes dosificaciones:
 - Dosificación 1: CONSOLID 444 (formulación líquida) 0.045%, SOLIDRY (formulación sólida) 0.5%.
 - Dosificación 2: CONSOLID 444 (formulación líquida) 0.045%, SOLIDRY (formulación sólida) 1%.
 - Dosificación 3: CONSOLID 444 (formulación líquida) 0.045%, SOLIDRY (formulación sólida) 1.5%.
 - Dosificación 4: CONSOLID 444 (formulación líquida) 0.045%, SOLIDRY (formulación sólida) 2%.

 Finalmente se obtienen los resultados, se realizan las conclusiones y se define la dosificación óptima.

3.4. Técnicas e instrumentos de investigación

Técnicas

Estudio geológico: consiste en la investigación de la naturaleza y características geológicas del estrato del suelo, a través de documentos técnicos.

Toma de muestra de suelo: Consiste en realizar una excavación a ciertas profundidad y dimensión, para tomar muestras en campo de los estratos del suelo, sin ser alterados. La extracción de muestras se utiliza para realizar ensayos en laboratorio, para las cuales es necesario contar con herramientas, depósitos, palas, picos, bolsas.

Evidencia en imágenes: la toma de imágenes se considera una prueba real, en esta investigación las fotografías evidencian el estado actual del tramo a estudiar.

Instrumentos

Los instrumentos que se utilizarán son la ficha de observación no experimental de campo, el cual nos permitirá conocer el tipo de suelos.

Equipos para ensayos de suelos: a través de los equipos se realizan los estudios del suelo en laboratorio.

3.5. Procesamiento y análisis de datos

3.5.1. Estudio geológico

Para el estudio geológico, se ha tomado en cuenta la información extraída del expediente técnico realizado por la Municipalidad distrital de Chulucanas, del proyecto titulado "MEJORAMIENTO Y AMPLIACIÓN DEL SISTEMA DE AGUA POTABLE Y

ELIMINACIÓN DE EXCRETAS EN EL CASERÍO CRUZ DE CAMPANAS Y ANEXO EL CARRASCO, DISTRITO DE CHULUCANAS, PROVINCIA DE MORROPÓN-PIURA".

3.5.1.1. Geología del área de estudio

La zona de investigación del proyecto de tesis se encuentra comprendida dentro del cuadrángulo 11-c Chulucanas del Boletín N° 39 Serie A de la Carta Geológica Nacional del INGEMMET.

3.5.1.2. Geología regional

a) Mesozoico - cretáceo medio

Volcánico Lancones (Km-vl)

Es una gran acumulación volcánico-sedimentaria. Desde el punto de acción litológico, el Volcánico Lancones presenta dos facies predominantes; una Oriental, principalmente volcánica y otra Occidental, volcanoclástica.

La Facies Oriental consiste de brechas piroclásticas andesíticas, masivas, cuyos litoclastos tienen dimensiones considerables, la estratificación está raramente definida.

La Facies Occidental, está constituido por bancos competentes de andesitas piroclásticas, de color gris verdosas a gris violáceas en una matriz microbrechosa pero cementada con calcita; se intercalan capas sedimentarias. Hacia las partes intermedias los niveles piroclásticos son más finos y hasta tobáceos.

b) Cenozoico - terciario inferior

Formación Yapatera (Ti-y)

Es una secuencia de conglomerados continentales. La litología está dada por una secuencia de conglomerados diagenizados intercalados con areniscas tobáceas, los guijarros consisten en su mayoría de cuarcitas.

c) Cuaternario reciente

Depósitos Fluviales (Qr-fl)

Son los depósitos acumulados en el fondo de los grandes cursos fluviales, están constituidos por conglomerados inconsolidados, arenas sueltas y materiales limo-arcillosos, estos depósitos tienen mayor amplitud en los tramos de valle y llanura.

Depósitos Aluviales (Qr-al)

Se encuentran al pie de las estribaciones de la Cordillera Occidental y en los flancos de los grandes cursos fluviales, en algunos sectores están parcialmente cubiertos por depósitos eólicos, algunas veces conformando llanuras aluviales.

Los materiales depositados son conglomerados y fanglomerados polimícticos, poco consolidados, con una matriz areniscosa ó limo arcilloso, cuyas composiciones varían de acuerdo a los terrenos de donde provienen.

Depósitos Eólicos (Qr-e)

Los mantos de arena eólica se han depositado en gran volumen debido a la superposición de dunas que se encuentran estabilizadas por la vegetación, se observa que estos depósitos han sufrido erosión fluvial, de sistema dendrítico; más al Norte, estos materiales están inconsolidados por lo que las dunas están en constante movimiento.

El movimiento de los mantos de arena de Sur a Norte y de Suroeste a Noroeste, ha originado la desviación del cauce del río Piura hacia el Norte.

Hest charles

Hest charles

Hest charles

Congres

Hest charles

Congres

Congres

Hest charles

Congres

Congr

Figura 7. Geología de Batanes – San Pedro (Distrito de Chulucanas).

Nota. Expediente Técnico de Municipalidad distrital de Chulucanas (2011).

ERATEMA SISTEMA SERIE PISO UNIDADES LITOESTRATIGRAFICAS ROCAS INTRUSIVAS Depósitos fluviales RECIENTE CUATERNARIO aluviales y eòlicos ~~~~~ PLEISTOCENC Voic. Huaypira TQ-vh CENOZOI CO SUPERIOR Fm. Tambo Grande Ts-10 MEDIO Volc. Porculla Tim--vp Vancing VV TERCIARIO Fm.Verdům TI-V gr-p INFERIOR mg-pb onzogranito Peñablanca П-у Granodiorita La Lomas 00-1 Fm. Yapatera gd-p 1-c Fm. Jahuay Negro Ks-jn 1-0,0 Tonalita diorita Pamba SUPERIOR Ks-h d-m Fm. Huasimal Cenomaniano Volc. Lancones MESOZOI CO CRETACEO MEDIO Volc. La Bocana Volc. Eros Gpo. San Pedro INFERIOR Valanginlano

Figura 8. Columna Geológica de la zona de estudio

Nota. Expediente Técnico de Municipalidad distrital de Chulucanas (2011).

Services

Company

Co

Figura 9. Características Topográficas del Tramo Batanes – San Pedro

Nota. Expediente Técnico de Municipalidad distrital de Chulucanas (2011).

SIGNOS CONVENCIONALES ICA CAMINOS Capital de departamento СНОТА Capital de provincia Capital de distrito Coata Poblados_ Pichocollo Túnel; Puente Pasadera: Oroya o huare Acantilado, barranco, escarpado FERROCARRILES Trocha normal, una sola vía Depresión Pozo; Fuente; Jaguay Acueducto:Subterráneo elevado Estación paradero __ Zona Inundada; Duna, arena seca Bosque ralo: Bosque aspeso Línea telegráfica _ Línea telefónica _ Caña de Azúcar; Matorral Escuela; Iglesia Hacienda; Casa aislada . Río seco una parte del año o quebrada de fondo plano y arenoso Cementerio, Campo de aterrizaje; Mina _ **#** * Láguna; Laguna seca una parte del año Rio importante; Pantano Correo; Correo y telégrafo; Correo, telégrafo y teléfono. Central de fuerza eléctrica: Telégrafo inalámbrico _ Riachuelo, arroyo, quebrada_ Horno de fundición; Horno de quemar ladrillos _ Riachuelo, arroyo, quebrada seca una parte del año Bomba de Agua, Bomba de viento: Pozo de petróleo Tanque: Monumentos y ruinas incaicas Fondeadero; Faro Cercos (madera o alambre) Quebrada seca, thalwer Señal geodésica: ler Orden, 2º Orden; Canal de irrigación: Estanque

Figura 10. Signos Convencionales

Nota. Expediente Técnico de Municipalidad distrital de Chulucanas (2011).

3.5.1.3. Geología local

Los suelos sobre los que se encuentra emplazada la zona de investigación, está compuesta en su superficie, por arcillas de color marrón oscuro con intercalaciones, por debajo, de arenas de grano medio de color marrón claro y fragmentos de roca volcánica, medianamente compactas. No se observa presencia de la napa freática.

3.5.2. Estudio de mecánica de suelos

Este permitió conocer las propiedades físicas del suelo del tramo de estudio, con respecto al procedimiento del Manual de ensayo de materiales (MTC, 2016).

- a) Análisis granulométrico por Tamizado. MTC E 107
 - Objeto: Distribuir cuantitativamente las partículas del suelo, de acuerdo a su tamaño.
 - Finalidad: Definir los porcentajes de suelo pasante de los tamices empleados en este ensayo, hasta el Tamiz N° 200.
 - Equipos
 - Balanzas.
 - Estufa.
 - Materiales
 - Tamices.

Tabla 4

Tamices de malla cuadrada

TAMICES	ABERTURA (mm)
3″	75,000
2"	50,800
1 ½"	38,100
1"	25,400
3/4"	19,000
3/8″	9,500
N° 4	4,760
N° 10	2,000
N° 20	0,840
N° 40	0,425
N° 60	0,260
N° 140	0,106
N° 200	0,075

Nota. Manual de ensayo de materiales MTC (2016).

- Envases.
- Cepillo y brocha.

Procedimiento

 Se separa el material retenido en el Tamiz N°4 y se coloca en los tamices.

Tabla 5 *Relación de tamices y sus aberturas*

TAMICES	ABERTURA (mm)
3″	75,000
2"	50,800
1 1/2"	38,100
1"	25,400
3/4″	19,000
3/8″	9,500
N° 4	4,760

Nota. Manual de ensayo de materiales MTC (2016).

 Se mueven los tamices de un lado a otro, realizando movimientos en circunferencia de la muestra sobre la malla. Después, se pesa el material retenido en cada Tamiz.

Cálculos

• El porcentaje retenido, se calcula con la siguiente fórmula:

$$\%Retenido = \frac{Peso\ retenido\ en\ el\ Tamiz}{Peso\ total} x100$$

 Se calcula el porcentaje más fino, realizando una diferencia de manera acumulativa de 100% de los porcentajes retenidos en cada Tamiz.

$$%Pasa = 100 - %Retenido acumulado$$

b) Determinación del límite líquido de los suelos. MTC E 110

- Objeto

Es el porcentaje del contenido de humedad, donde el suelo se encuentra en el límite entre los estados líquido y plástico.

Referencia normativa

NTP 339.129: SUELOS. Método de ensayo para determinar el límite líquido, límite plástico e índice de plasticidad de suelos.

- Equipos

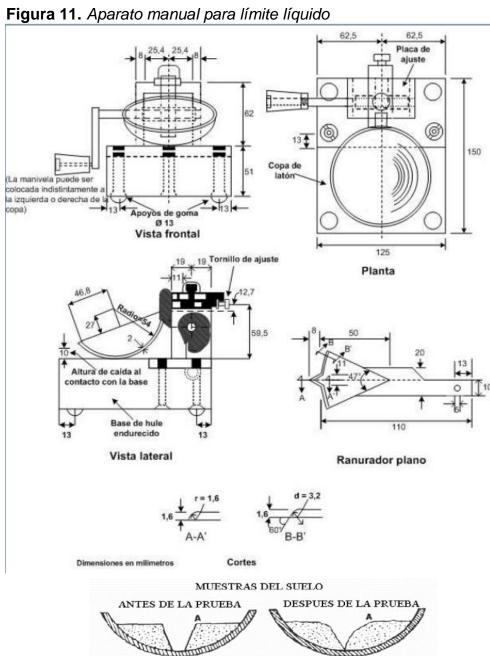
- Recipiente: vasija de porcelana.
- Aparato del límite líquido (o de Casagrande).
- Acanalador.
- Calibrador.
- Recipientes o pesa filtros.
- Balanza.
- Estufa.

Materiales

Espátula.

Insumos

Agua destilada.


Muestra

Se extrae una muestra representativa de 150 g a 200 g del material pasante del Tamiz N° 40.

Procedimiento

Multipunto y punto

Se coloca una porción de muestra mezclada previamente con agua destilada en la copa de Casagrande presionándola y esparciéndola hasta una profundidad de 10 mm aproximadamente, en su punto más bajo, de esta manera se forma una superficie prácticamente horizontal. En la medida de lo posible, se debe realizar el menor número de pasadas con la espátula, evitando la formación de burbujas de aire atrapadas en la mezcla.

Nota. Manual de ensayo de materiales MTC (2016).

A través del acanalador, se divide la muestra en la copa realizando una ranura que une el punto más alto y más bajo.

Se levanta y suelta la copa girando el manubrio, se registra el número de golpes hasta que ambas mitades estén en contacto en la base de la ranura de 13 mm de longitud.

Se toma una muestra de suelo de aproximadamente el ancho de la espátula, extendiendo de extremo a extremo, se coloca en un recipiente y se cubre.

Se lava, seca y fija la copa para realizar la siguiente prueba.

Se mezcla nuevamente la muestra del suelo, añadiéndole agua destilada incrementando el contenido de humedad y disminuyendo el número de golpes que se requiere para cerrar la ranura. La prueba se realizará para un cierre donde se requiere de 25 a 35 golpes, 20 a 30 golpes, y de 15 a 20 golpes.

Después de realizada cada prueba, se pesa la porción extraída de la copa, se coloca al horno de 16 a 20 horas, se retira del horno y se registra el peso, de esta manera se determina el contenido de humedad en cada prueba.

Cálculos

(Multipunto)

Se realiza una representación del contenido de humedad (escala aritmética) como ordenada y número de golpes (escala logarítmica) de la copa como abscisa, se traza la mejor línea recta que pasa por los tres puntos o más graficados.

Se toma el contenido de humedad que corresponde a la intersección de la línea con la abscisa de 25 golpes como el límite líquido del suelo.

(Un punto)

Determinar el límite líquido de cada espécimen para contenido de humedad utilizando una las siguientes fórmulas.

$$LL = W^n \left(\frac{N}{25}\right)^{0.121} \text{ o } LL = kW^n$$

Donde:

N= Números de golpes.

Wⁿ= Contenido de humedad del suelo.

K= Factor dado en la Tabla 5.

Tabla 6 *Número de golpes y factor para límite líquido*

N (Numero de golpes)	K (Factor para límite líquido)
20	0,974
21	0,979
22	0,985
23	0,990
24	0,995
25	1,000
26	1,005
27	1,009
28	1,014
29	1,018
30	1,022

Nota. Manual de ensayo de materiales MTC (2016).

- c) Determinación del límite plástico (LP) de los suelos e índice de plasticidad (IP).
 MTC E 111
 - Objeto

Determinar el límite plástico de un suelo, y el cálculo del índice de plasticidad, conociendo el límite líquido del mismo suelo.

Finalidad y alcance

El límite plástico es la humedad más baja en la cual se forman barritas de suelo de 3.2 mm de diámetro, estas barritas se ruedan entre la palma de la mano y una superficie lisa (vidrio esmerilado), sin que estas se desmoronen.

Referencia normativa

NTP 339.129: SUELOS. Método de ensayo para determinar el límite líquido, límite plástico e índice de plasticidad de suelos.

Equipos

- Espátula.
- Recipiente de porcelana o similar.
- Balanza.
- Horno o estufa.
- Tamiz N°40.
- Agua destilada.
- Vidrios de reloj o recipientes para determinación de humedades.
- Superficie de rodadura.

Muestra

Para determinar el límite plástico se toma 20 g de la muestra que pasa por el Tamiz N° 40, se amasa con agua destilada formando una esfera con la masa. Se extrae una muestra de 1.5 g a 2.0 g para el ensayo.

Procedimiento

La mitad de la muestra se moldea formando un elipsoide, se rueda con los dedos sobre una superficie lisa, haciendo presión para formar cilindros.

Si antes de llegar a formar el cilindro de 3.2 mm de diámetro no se ha desmoronado, se forma un elipsoide y se repite el proceso las veces necesarias, hasta que se desmorone con ese diámetro.

Debido a que se tiene distintos tipos de suelos, el desmoronamiento puede darse de diversas formas: en suelos altamente plásticos el cilindro se divide en trozos de 6 mm de longitud, mientras tanto los trozos son más pequeños en suelos plásticos.

La porción obtenida se coloca en vidrios de reloj hasta reunir 6 g de suelo, se determina la humedad para cada prueba.

Cálculos

Tabla 7 *Estimados de precisión*

Índice de precisión y tipo de ensayo	Desviación Estándar	Rango Aceptable de dos resultados
Precisión de un operador simple		
Límite Líquido	0,8	2,4
Precisión Multilaboratorio		
Límite Líquido	3,5	9,9

Nota. Manual de ensayo de materiales MTC (2016).

El L.P. se expresa cómo % de humedad y se calcula de la siguiente manera.

$$L.P. = \frac{Peso\ de\ agua}{Peso\ de\ suelo\ secado\ al\ horno} x\ 100$$

Cálculos de Índice de Plasticidad

Donde:

L.L.: Límite líquido.

L.P.: Límite plástico.

L.L. y L.P.: Son números enteros.

- Si el límite líquido o límite plástico no se pueden determinar, el índice de plasticidad se describe con la abreviatura NP (no plástico).
- De igual manera, cuando el límite plástico es igual o mayor que el límite líquido, el índice de plasticidad se describe como NP (no plástico).
- d) Determinación del contenido de humedad de un suelo. MTC E 108
 - Objeto

Determinar el contenido de humedad.

Finalidad

El contenido de humedad se expresa como la relación del peso de agua en una masa de suelo y el peso de las partículas sólidas, expresado en porcentaje.

Referencias normativas:

ASTM D 2216: Standard Test Method of Laboratory Determination of Water (Moisture) Content of Soil and Rock.

Equipos

- Horno de secado.
- Balanzas.

Materiales

- Recipientes resistentes a la corrosión.
- Guantes, tenazas, utensilios para manipular recipientes calientes.
- Otros utensilios: cuchillos, espátulas, cucharas, lona para cuarteo, divisores de muestras.

Muestra

La obtención del contenido de humedad, se realiza inmediatamente después del muestreo, especialmente si se utilizan bolsas plásticas o contenedores corrosibles.

Procedimiento

Se determina la masa de un contenedor limpio, seco y se registra.

Se coloca la porción de muestra húmeda en el contenedor, se asegura la tapa. Se pesa en la balanza, el contenedor con la muestra húmeda.

El contenedor con la muestra húmeda se coloca en el horno de 12 a 16 horas.

Una vez secado el material a peso constante, se retira del horno, se obtiene el peso del contenedor y el material secado, y se registra el valor.

Cálculos

El contenido de humedad se obtiene a través de la siguiente fórmula.

$$W = \frac{Peso \cdot de \cdot agua}{Peso \cdot de \cdot suelo \cdot sec \, ado \cdot al \cdot horno} \times 100$$

$$W = \frac{M_{CWS} - M_{CS}}{M_{CS} - M_{C}} \times 100 = \frac{M_{W}}{M_{S}} \times 100$$

Donde:

W = es el contenido de humedad, (%)

M_{cws} = es el peso del contenedor más el suelo húmedo, en gramos

M_{cs} = es el peso del contenedor más el suelo secado en horno, en gramos

M_c = es el peso del contenedor, en gramos

Mw = es el peso del agua, en gramos

Ms = es el peso de las partículas sólidas, en gramos

e) Proctor modificado ASTM D-1557, MTC E 115

Objeto

Se conoce el contenido de humedad óptima para que el suelo pueda llegar a su máxima densidad, mediante el ensayo de compactación.

Finalidad

Se determina la relación optima y densidad seca máxima del suelo mediante la curva de compactación. El ensayo es aplicable a suelos que tienen el igual o menor al 30% en peso retenido en el Tamiz ¾".

Referencias normativas

NTP 339.141.

ASTM D 1557.

Equipos

- Ensamblaje de molde.
- Collar.
- Horno para secado.
- Balanza.
- Pisón metálico.
- Molde de 4 pulgadas con diámetro interior promedio de 101.6 mm +/-0.4 mm y altura de 116.4 mm +/- 0.5 mm
- Molde de 6 pulgadas 152.4 mm +/- 0.7 mm de diámetro interior y una altura de 116.4 +/- 0.5 mm
- Extractor de muestras.

Materiales

- Conjunto de Tamices.
- Herramientas para mezclado.

56

_

Muestra

Para la realización del método A y B se necesita en peso una muestra de 16 Kg de suelo seco.

Se debe determinar el porcentaje de material retenido en la Malla N°4, 3/8", 3/4" para elegir el método a utilizar A, B y C.

Procedimiento

PREPARACIÓN DE APARATOS

Una vez establecido el método a utilizar, se ajustará el molde, base y collar de extensión; se debe verificar que los equipos y herramientas a utilizar estén correctamente calibrados, antes de ser utilizados. Se utilizarán las siguientes herramientas: pisón manual, balanza, moldes.

PREPARACIÓN DEL ENSAYO

SUELOS

Preparar como mínimo 4 muestras, con una masa de 3 Kg anteriormente Tamizado para método A y B y un aproximado de 5.9 Kg a 6 Kg para el uso de método C.

COMPACTACIÓN

Revisar y ajustar los moldes para ensayo con el collar al plato base para generar una correcta compactación, cabe mencionar que se debe apoyar los moldes sobre una superficie estable y rígida.

La muestra será compactada en 5 capas consecutivas en partes iguales y verter al molde.

Cada capa debe golpearse con 25 golpes para el molde de diámetro de 4 pulgadas y 56 golpes para el molde de 6 pulgadas.

Se debe enrazar la muestra ya compactada en la parte superior con una regla rígida de apoyo.

Se toma apunte del peso de la muestra y molde.

Se quita el material del molde, se saca una muestra para obtener el contenido de humedad.

Cálculos

Se debe calcular inicialmente la densidad húmeda y densidad seca, ahora se calculará el peso unitario seco con la siguiente forma:

$$\rho_m = 1000 \ x \ \frac{(M_t - M_{md})}{V}$$

Donde:

ρ_m= Densidad húmeda de la muestra compactada.

M_t= Masa de espécimen húmedo y de molde.

M_{md}= Masa de molde de compactación.

V= Volumen de molde de compactación.

$$\rho_d = \frac{\rho_m}{1 + \frac{W}{100}}$$

 ρ_d = Densidad seca de la muestra compactada.

W = Contenido de agua (%).

$$W_{sat} = \frac{(\gamma_w)(G_s) - \gamma_d}{(\gamma_d)(G_s)} \times 100$$

Donde:

W_{sat} = Contenido de agua (saturación).

 γ_W = Peso unitario de agua.

 γ_d = Peso unitario seco de suelo.

G_s = Gravedad especifica del suelo

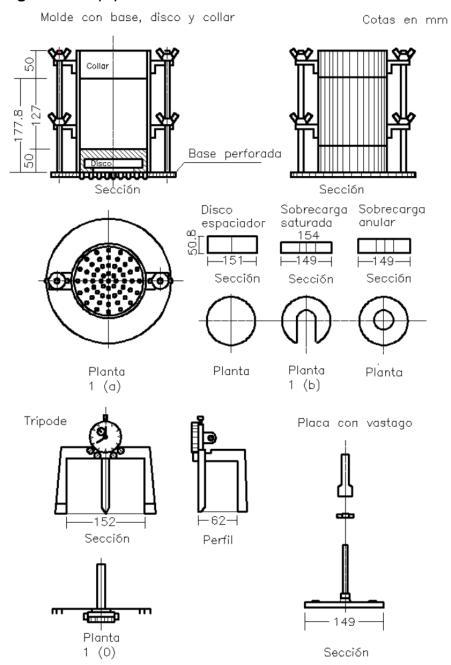
f) CBR de suelos. MTC E 132

Objeto

Determinar del índice de resistencia de suelos que se describe como relación de soporte conocido como CBR (California Bearing Ratio).

Finalidad

La finalidad de este ensayo es evaluar la resistencia potencial de la subrasante, subbase, y material de la base. El valor que se obtiene es fundamental para el diseño de pavimentos flexibles.


Referencia normativa

ASTM D 1883: Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils.

Equipos

- Prensa similar a la utilizada en ensayos de compresión.
- Molde cilíndrico de metal.
- Disco circular espaciador, de metal.
- Pisón de compactación.
- Pesas.
- Aparato medidor de expansión.
- Pistón de penetración.
- Dos diales.
- Tanque.
- Estufa.
- Balanzas.
- Tamices N°4, ¾" y 2".
- Cuarteador, mezclador, cápsulas, probetas, espátulas, discos de papel de filtro, etc.

Figura 12. Equipo CBR de suelos

Procedimiento

Se obtendrán valores o resultados de las muestras de ensayo que tengan el mismo peso unitario y contenido de humedad que se encuentra en el terreno.

Se obtendrá la humedad optima y densidad máxima a través del ensayo de Proctor modificado.

Se deberá utilizar un peso aproximado de 5 Kg para cada molde

Se coloca el molde con su respectiva base, luego se colocará un collar con el disco espaciador y seguido el papel filtro.

Una vez armado el sistema, se arman dos más para tener así tres muestras representativas del ensayo.

El material a ensayar se mezcla con el porcentaje de humedad optima obtenido con anterioridad, luego se procede a colocar el material en el molde cada 5 capas, en el molde 1 se da 12 goles, en el segundo 26 golpes y en el tercero 55 golpes. Esto se deberá realizar por cada capa puesta en el molde.

Se retira el collar y disco espaciador, se gira el molde y se coloca sobre el vástago con los discos, con esto se llegará a simular la sobrecarga que generan las capas que van por encima del suelo.

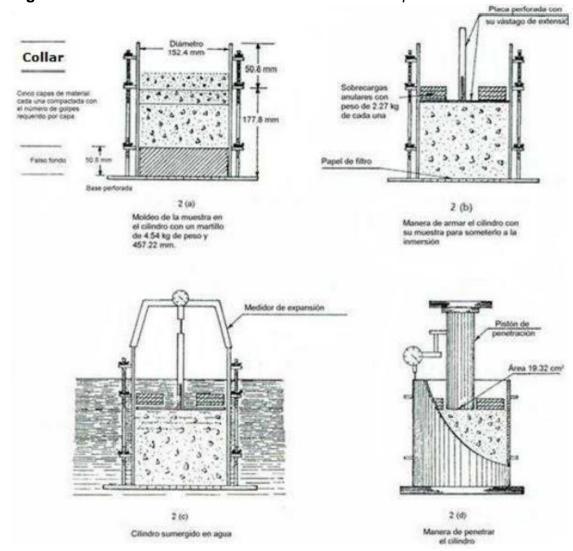


Figura 13. Determinación del valor de la relación de soporte en el laboratorio

Durante los 4 días siguientes se anotan los datos que genera el deformímetro, una vez por día. Luego se retiran los moldes de agua, de igual forma se retira el trípode y vástago con los discos.

Se colocan en cero en las agujas de los diales y el anillo dinamométrico y otro dispositivo para medir la carga y los resultados de penetración.

Tabla 8Lecturas de penetraciones

Milímetros	Pulgadas
0,63	0,025
1,27	0,050
1,90	0,075
2,54	0,100
3,17	0,125
3,81	0,150
5,08	0,200
7,62	0,300
10,16	0,400
12,70	0,500

Cálculos

Fórmula para calcular la humedad de compactación:

% de agua a añadir =
$$\frac{H-h}{100+h} \times 100$$

Donde:

H: Humedad prefijada.

h: Humedad natural.

Fórmula para calcular el porcentaje de expansión:

L₁: Lectura inicial en milímetros.

L2: Lectura final en milímetros.

Para determinar el valor de CBR se genera la curva que relaciona las presiones generadas y las penetraciones.

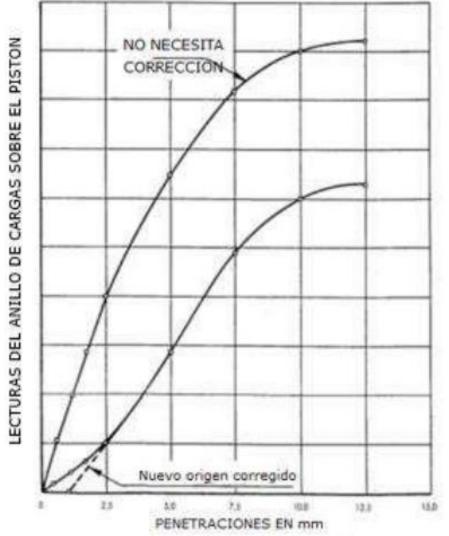


Figura 14. Curva de cálculo de índice de CBR

- g) Ensayo de ascensión capilar con carga constante de agua.
 - Objeto
 Medir el ascenso del agua.

Finalidad

Realizar probetas de la muestra natural y muestra natural estabilizada en diferentes dosificaciones, y compararlas.

Procedimiento

Se elaboran probetas con material natural y material natural estabilizado con diferentes dosificaciones. Las medidas de las probetas son de 10 cm de altura y 5 cm de diámetro.

Probeta 1	Material Natural 100%.
Probeta 2	Material Natural 100%, Formulación líquida 0.045% Y Formulación sólida 0.5%
Probeta 3	Material Natural 100%, Formulación Iíquida 0.045% y Formulación sólida 1%
Probeta 4	Material Natural 100%, Formulación líquida 0.045% y Formulación sólida 1.5%
Probeta 5	Material Natural 100%, Formulación líquida 0.045% y Formulación sólida 2%

Se colocan las probetas en un recipiente de humedecimiento, se vierte agua de 1 a 3 cm.

Se toman lecturas de ascenso capilar hasta 96 horas, se grafica según las lecturas obtenidas.

IV. PRESENTACIÓN DE RESULTADOS

4.1. Propuesta de investigación

Se propone realizar estudios topográficos para obtener la planimetría y altimetría de la superficie del tramo de investigación, con la finalidad de realizar estudios previos para el diseño geométrico de la vía.

4.2. Análisis e interpretación de resultados

4.2.1. Análisis granulométrico por Tamizado

Tabla 9Cuadro resumen de porcentajes que pasan por tamices

		CUADR	O RESU	MEN D	E CARA	CTERIZA	ACIÓN I	DEL SUE	LO				
		LABOR	RATORIO D	E MECÁNI	CA DE SUE	LOS, CONC	RETO Y PA	VIMENTOS	5				
NOMBRE DEL PROYECTO:		Estudio de estabilización de suelos para fines de mejoramiento aplicando el sistema consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura.											
UBICACIÓN:	Distrito de	Distrito de Chulucanas, provincia de Morropón, departamento de Piura.											
CALICATA	C 01	C 05	C 06	C 02	C 07	C 08	C 03	C 09	C 10	C 11	C 12	C 04	
PROGRESIVA	0+500	1+500	2+500	3+500	4+500	5+500	6+500	7+500	8+500	9+500	10+500	12+000	
PROFUNDIDAD (m)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Granulometría													
% pasa la malla N° 4	99.5	99.8	100	100	100	99.1	99.4	99.7	100	100	100	86.3	
% pasa la malla N° 10	98.7	99	98.6	99.8	99.7	95.4	98.1	95.4	99.7	99.5	99.6	80.8	
% pasa la malla N° 40	92.6	96.5	94.9	96.3	98.9	89.2	85.4	88.2	97.3	96.3	96.8	69.9	
% pasa la malla N° 200	71.3	85.6	84.7	83	87.1	81.2	46.7	79.5	88.1	85.2	87.6	56.5	

Nota. Elaboración propia (2022).

En el cuadro anterior se muestra un resumen del porcentaje que pasa por los tamices N°04, N°10, N°40 y N°200 de las 12 muestras extraídas del tramo de investigación.

4.2.2. Límites de Atterberg

Tabla 10Cuadro resumen de límites de Atterberg

		CUA	DRO RES	UMEN E	DE CARA	CTERIZA	ACIÓN D	EL SUEL	0				
		LA	BORATORIC	DE MECÁN	ICA DE SUE	LOS, CONC	RETO Y PAV	IMENTOS					
NOMBRE DEL PROYECTO:		istudio de estabilización de suelos para fines de mejoramiento aplicando el sistema consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia le Morropón, departamento de Piura.											
UBICACIÓN:	Distrito de Ch	Distrito de Chulucanas, provincia de Morropón, departamento de Piura.											
CALICATA	C 01	C 05	C 06	C 02	C 07	C 08	C 03	C 09	C 10	C 11	C 12	C 04	
PROGRESIVA	0+500	1+500	2+500	3+500	4+500	5+500	6+500	7+500	8+500	9+500	10+500	12+000	
PROFUNDIDAD (m)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Límites de consistencia													
Límite líquido	55.8	56.3	60.1	57.8	51.4	50.5	42.9	52.2	50.3	53.8	59.6	35.4	
Límite plástico	33.8	26	24.1	36.9	22.4	22.7	27.9	25.5	18.3	22.3	26	22.5	
Índice de plasticidad	22	30.3	36	20.9	29	27.8	15	26.7	32	31.5	33.6	12.9	

Nota. Elaboración propia (2022).

En el cuadro anterior se muestra un resumen de resultados obtenidos del límite líquido, límite plástico e índice de plasticidad de las 12 muestras extraídas del tramo de investigación.

4.2.3. Contenido de humedad

Tabla 11

Cuadro resumen de contenido de humedad

	CUADRO RESUMEN DE CARACTERIZACIÓN DEL SUELO											
		LA	BORATORIC	DE MECÁN	ICA DE SUE	LOS, CONC	RETO Y PAV	/IMENTOS				
NOMBRE DEL PROYECTO:		studio de estabilización de suelos para fines de mejoramiento aplicando el sistema consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia e Morropón, departamento de Piura.										
UBICACIÓN:	Distrito de Ch	Distrito de Chulucanas, provincia de Morropón, departamento de Piura.										
CALICATA	C 01	C 05	C 06	C 02	C 07	C 08	C 03	C 09	C 10	C 11	C 12	C 04
PROGRESIVA	0+500	1+500	2+500	3+500	4+500	5+500	6+500	7+500	8+500	9+500	10+500	12+000
PROFUNDIDAD (m)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Contenido de humedad (%)	9.92	6.75	8.79	10.29	9.63	8.03	10.94	5.2	7.19	7.26	10.12	9.23

Nota. Elaboración propia (2022).

En el cuadro anterior se muestra un resumen de resultados del contenido de humedad de las 12 muestras extraídas del tramo de investigación.

4.2.4. Clasificación de suelos

Sistema de clasificación SUCS

Tabla 12Cuadro resumen de clasificación SUCS

		CUA	DRO RES	UMEN D	E CARA	CTERIZA	CIÓN E	DEL SUEL	0			
		LA	BORATORIC	DE MECÁNI	CA DE SUE	LOS, CONCR	RETO Y PA	VIMENTOS				
NOMBRE DEL PROYECTO:	Estudio de est de Morropón,			nes de mejorar	niento aplica	ndo el sistema	a consolid e	n el tramo con	nprendido entr	e C.P. Batane	s y C.P. San Pe	dro, provincia
UBICACIÓN:	Distrito de Ch	ulucanas, prov	incia de Morro	pón, departam	ento de Piura	Э.						
CALICATA	C 01	C 05	C 06	C 02	C 07	C 08	C 03	C 09	C 10	C 11	C 12	C 04
PROGRESIVA	0+500	1+500	2+500	3+500	4+500	5+500	6+500	7+500	8+500	9+500	10+500	12+000
Sistema de clasificación SUCS	MH	CH	CH	MH	CH	CH	SM	CH	CH	CH	СН	CL
	Limo de alta plasticidad con arena	Arcilla de alta plasticidad.	Arcilla de alta plasticidad con arena.	Limo de alta plasticidad con arena	Arcilla de alta plasticidad.	Arcilla de alta plasticidad con arena.	Arena Iimosa	Arcilla de alpa plasticidad con arena.	Arcilla arenosa de baja plasticidad	Arcilla de alta plasticidad.	Arcilla de alta plasticidad.	Arcilla arenosa de baja plasticidad

Nota. Elaboración propia (2022).

En el cuadro anterior se muestra un resumen del tipo de suelo de las 12 muestras extraídas del tramo de investigación, según la clasificación SUCS.

Sistema de clasificación AASHTO

Tabla 13Cuadro resumen de clasificación AASHTO

	CUADRO RESUMEN DE CARACTERIZACIÓN DEL SUELO											
		LAI	BORATORIO	DE MECÁNI	CA DE SUE	LOS, CONCE	RETO Y PAV	'IMENTOS				
NOMBRE DEL PROYECTO:	Estudio de est de Morropón,		•	nes de mejorar	miento aplica	ndo el sistem	a consolid er	n el tramo con	nprendido entr	re C.P. Batanes	s y C.P. San Ped	lro, provincia
UBICACIÓN:	Distrito de Chu	Distrito de Chulucanas, provincia de Morropón, departamento de Piura.										
CALICATA	C 01	C 05	C 06	C 02	C 07	C 08	C 03	C 09	C 10	C 11	C 12	C 04
PROGRESIVA	0+500	1+500	2+500	3+500	4+500	5+500	6+500	7+500	8+500	9+500	10+500	12+000
Sistema de clasificación AASHTO	A-7-5 (17)	A-7-6 (20)	A-7-6(20)	A-7-5 (20)	A-7-6 (20)	A-7-6 (20)	A-7-6 (4)	A-7-6(20)	A-7-6(20)	A -7-6(20)	A-7-6 (20)	A-6 (6)
	MALO	MALO	MALO	MALO	MALO	MALO	MALO	MALO	MALO	MALO	MALO	MALO

Nota. Elaboración propia (2022).

En el cuadro anterior se muestra un resumen del tipo de suelo de las 12 muestras extraídas del tramo de investigación, según la clasificación AASHTO.

4.2.5. Proctor modificado (muestra inalterada)

Tabla 14Cuadro resumen de ensayo proctor modificado de muestras inalteradas

CUADRO RESUMEN DE CARACTERIZACIÓN DEL SUELO												
LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS												
NOMBRE DEL PROYECTO:	OYECTO: Estudio de estabilización de suelos para fines de mejoramiento aplicando el sistema consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura.											
UBICACIÓN:	Distrito de Chulucanas, provincia de Morropón, departamento de Piura.											
CALICATA	C 01	C 05	C 06	C 02	C 07	C 08	C 03	C 09	C 10	C 11	C 12	C 04
PROGRESIVA	0+500	1+500	2+500	3+500	4+500	5+500	6+500	7+500	8+500	9+500	10+500	12+000
Proctor modificado												
Máxima densidad seca (gr/cm3)	1.782	1.788	1.773	1.782	1.776	1.755	1.771	1.763	1.773	1.754	1.756	1.806
Humedad óptima (%)	10.7	10.2	10.1	12.1	13	10.2	13.6	10.1	9.6	10.2	10.2	11.7

Nota. Elaboración propia (2022).

En el cuadro anterior se muestra un resumen de resultados de proctor modificado de la muestra inalterada del tramo de investigación.

4.2.6. California Bearing Ratio (CBR) de muestra inalterada

Tabla 15Cuadro resumen de ensayo CBR de muestras inalteradas

CUADRO RESUMEN DE CARACTERIZACIÓN DEL SUELO												
		LA	BORATORIO	DE MECÁN	ICA DE SUE	LOS, CONC	RETO Y PAV	IMENTOS				
NOMBRE DEL PROYECTO:	Estudio de estabilización de suelos para fines de mejoramiento aplicando el sistema consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura.											
UBICACIÓN:	Distrito de Ch	Distrito de Chulucanas, provincia de Morropón, departamento de Piura.										
CALICATA	C 01	C 05	C 06	C 02	C 07	C 08	C 03	C 09	C 10	C 11	C 12	C 04
PROGRESIVA	0+500	1+500	2+500	3+500	4+500	5+500	6+500	7+500	8+500	9+500	10+500	12+000
CBR												
CBR al 95% de compactación	3.3	6.7	5.7	4.3	4.7	4.7	4.5	5.1	4.5	8.6	7.4	10.6
CBR al 100% de compactación	5.6	10	7.2	5.9	6.8	6.1	8.1	6	5.3	10.9	9.8	13.1

Nota. Elaboración propia (2022).

En el cuadro anterior se muestra un resumen de resultados de CBR de la muestra inalterada del tramo de investigación.

A continuación, se muestra un cuadro resumen de los ensayos de caracterización del suelo de la muestra inalterada.

Tabla 16
Cuadro resumen de los ensayos de caracterización del suelo de las muestras inalteradas

		CUAD	RO RESU	JMEN D	E CARA	CTERIZA	CIÓN D	EL SUEL	0			
		LAB	ORATORIO	DE MECÁNI	CA DE SUEI	LOS, CONCR	ETO Y PAV	MENTOS				
NOMBRE DEL PROYECTO:	Estudio de estabilización de suelos para fines de mejoramiento aplicando el sistema consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura.											
UBICACIÓN:	Distrito de Chulucanas, provincia de Morropón, departamento de Piura.											
CALICATA	C 01	C 05	C 06	C 02	C 07	C 08	C 03	C 09	C 10	C 11	C 12	C 04
PROGRESIVA	0+500	1+500	2+500	3+500	4+500	5+500	6+500	7+500	8+500	9+500	10+500	12+000
PROFUNDIDAD (m)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Granulometría												
% pasa la malla N° 4	99.5	99.8	100	100	100	99.1	99.4	99.7	100	100	100	86.3
% pasa la malla N° 10	98.7	99	98.6	99.8	99.7	95.4	98.1	95.4	99.7	99.5	99.6	80.8
% pasa la malla N° 40	92.6	96.5	94.9	96.3	98.9	89.2	85.4	88.2	97.3	96.3	96.8	69.9
% pasa la malla N° 200	71.3	85.6	84.7	83	87.1	81.2	46.7	79.5	88.1	85.2	87.6	56.5
Límites de consistencia												
Límite líquido	55.8	56.3	60.1	57.8	51.4	50.5	42.9	52.2	50.3	53.8	59.6	35.4
Límite plástico	33.8	26	24.1	36.9	22.4	22.7	27.9	25.5	18.3	22.3	26	22.5
Índice de plasticidad	22	30.3	36	20.9	29	27.8	15	26.7	32	31.5	33.6	12.9
Contenido de humedad (%)	9.92	6.75	8.79	10.29	9.63	8.03	10.94	5.2	7.19	7.26	10.12	9.23
Proctor modificado												
Máxima densidad seca (gr/cm3)	1.782	1.788	1.773	1.782	1.776	1.755	1.771	1.763	1.773	1.754	1.756	1.806
Humedad óptima (%)	10.7	10.2	10.1	12.1	13	10.2	13.6	10.1	9.6	10.2	10.2	11.7
Sistema de clasificación SUCS	MH	CH	CH	MH	CH	CH	SM	CH	CH	CH	CH	CL
	Limo de alta plasticidad con arena	Arcilla de alta plasticidad.	Arcilla de alta plasticidad con arena.	Limo de alta plasticidad con arena	Arcilla de alta plasticidad.	Arcilla de alta plasticidad con arena.	Arena limosa	Arcilla de alpa plasticidad con arena.	Arcilla arenosa de baja plasticidad	Arcilla de alta plasticidad.	Arcilla de alta plasticidad.	Arcilla arenosa d baja plasticidad
Sistema de clasificación AASHTO	A-7-5 (17)	A-7-6 (20)	A-7-6(20)	A-7-5 (20)	A-7-6 (20)	A-7-6 (20)	A-7-6 (4)	A-7-6(20)	A-7-6(20)	A -7-6(20)	A-7-6 (20)	A-6 (6)
	MALO	MALO	MALO	MALO	MALO	MALO	MALO	MALO	MALO	MALO	MALO	MALO
CBR												
CBR al 95% de compactación	3.3	6.7	5.7	4.3	4.7	4.7	4.5	5.1	4.5	8.6	7.4	10.6
CBR al 100% de compactación	5.6	10	7.2	5.9	6.8	6.1	8.1	6	5.3	10.9	9.8	13.1

Nota. Elaboración propia (2022).

4.2.7. Ensayo de ascensión capilar con carga constante de agua

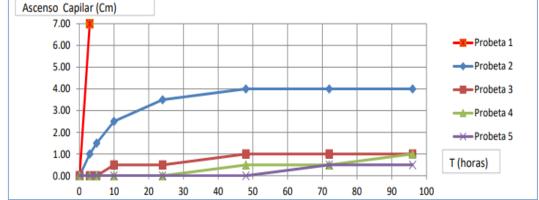

De los resultados de los ensayos de caracterización del suelo, se obtiene la muestra más desfavorable (C01) y se realiza el ensayo de ascensión capilar. Se realizaron 05 probetas con diferentes dosificaciones y estos fueron los resultados:

Tabla 17 Resultados de los ensayos de ascensión capilar de la muestra C01

Probeta	5 Minutos		10	dia	2 dias	3 dias	4 dias			
(H=Altura			Horas							
Probeta)	0.083	3	5	10	24	48	72	96		
1 (H=10.0 cm)	0.00	7.00			COL	APSÓ				
2 (H=10.0 cm)	0.00	1.00	1.50	2.50	3.50	4.00	4.00	4.00		
3 (H=10.0 cm)	0.00	0.00	0.00	0.50	0.50	1.00	1.00	1.00		
4 (H=10.0 cm)	0.00	0.00	0.00	0.00	0.00	0.50	0.50	1.00		
5 (H=10.0 cm)	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.50		

Nota. Elaboración propia (2022).

Figura 15. Gráfico representativo de ascensión capilar (cm) VS tiempo (hrs) Ascenso Capilar (Cm) 7.00 Probeta 1

Nota. Elaboración propia (2022).

A continuación, se muestran los resultados de los ensayos proctor y CBR realizados con 04 dosificaciones distintas, de la muestra más desfavorable C01.

4.2.8. Proctor modificado de la muestra estabilizada

Tabla 18

Muestra 1: incorporando 0.045% CONSOLID 444 (formulación líquida) + 0.5 % SOLIDRY (formulación sólida)

Formulación líquida (%)	0.045
Formulación sólida (%)	0.5
Proctor modificado	
Máxima densidad seca (gr/cm3)	1.875
Humedad óptima (%)	10.6

Nota. Elaboración propia (2022).

Tabla 19

Muestra 2: incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.0 % SOLIDRY (formulación sólida)

Formulación líquida (%)	0.045
Formulación sólida (%)	1.0
Proctor modificado	
Máxima densidad seca (gr/cm3)	1.899
Humedad óptima (%)	11.0

Nota. Elaboración propia (2022).

Tabla 20

Muestra 3: incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.5 % SOLIDRY (formulación sólida)

Formulación líquida (%)	0.045
Formulación sólida (%)	1.5
Proctor modificado	
Máxima densidad seca (gr/cm3)	1.882
Humedad óptima (%)	10.9

Nota. Elaboración propia (2022).

Tabla 21

Muestra 4: incorporando 0.045% CONSOLID 444 (formulación líquida) + 2.0 % SOLIDRY (formulación sólida)

•	
Formulación líquida (%)	0.045
Formulación sólida (%)	2.0
Proctor modificado	
Máxima densidad seca (gr/cm3)	1.870
Humedad óptima (%)	11.1

Nota. Elaboración propia (2022).

A continuación, se muestra cuadro resumen de los ensayos de proctor de las 04 muestras con diferentes dosificaciones.

Tabla 22

Cuadro resumen de resultados de proctor modificado con muestras estabilizadas con

Sistema Consolid, en diferentes dosificaciones

RESULTADOS DE SUELO + ADITIVO							
LABORATORIO DE	LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS						
NOMBRE DEL PROYECTO:	"Estudio de estabilización de suelos para fines de mejoramiento aplicando el sistema consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura."						
UBICACIÓN:	Distrito de Chulucanas, provincia de Morropón, departamento de Piura.						
CALICATA	C 01						
PROGRESIVA		0+5	500				
Muestra	M01	M02	M03	M04			
Formulación líquida (%)	0.045	0.045	0.045	0.045			
Formulación sólida (%)	0.5	1.0	1.5	2.0			
Proctor modificado							
Máxima densidad seca (gr/cm3)	1.875	1.899	1.882	1.870			
Humedad óptima (%)	10.6	11.0	10.9	11.1			

Nota. Elaboración propia (2022).

4.2.9. CBR del suelo de la muestra estabilizada.

Tabla 23

Muestra 1: incorporando 0.045% CONSOLID 444 (formulación líquida) + 0.5 % SOLIDRY (formulación sólida)

Formulación líquida (%)	0.045
Formulación sólida (%)	0.5
CBR	
CBR al 95% de compactación	9.6
CBR al 100% de compactación	12.1

Tabla 24

Muestra 2: incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.0 %

SOLIDRY (formulación sólida)

Formulación líquida (%)	0.045
Formulación sólida (%)	1.0
CBR	
CBR al 95% de compactación	17.7
CBR al 100% de compactación	22.6

Nota. Elaboración propia (2022).

Tabla 25

Muestra 3: incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.5 % SOLIDRY (formulación sólida)

Formulación líquida (%)	0.045
Formulación sólida (%)	1.5
CBR	
CBR al 95% de compactación	17.1
CBR al 100% de compactación	21.0

Nota. Elaboración propia (2022).

Tabla 26

Muestra 4: incorporando 0.045% CONSOLID 444 (formulación líquida) + 2.0 % SOLIDRY (formulación sólida)

Formulación líquida (%)	0.045
Formulación sólida (%)	2.0
CBR	
CBR al 95% de compactación	23.5
CBR al 100% de compactación	28.2

A continuación, se muestra un cuadro resumen de los resultados de CBR del suelo de la calicata 01 estabilizada con Sistema Consolid.

Tabla 27 *CBR (C01) estabilizado con aditivo*

RESULTADOS DE SUELO + ADITIVO						
LABORATORIO DI	E MECÁNICA DE	SUELOS, CONC	RETO Y PAVIM	ENTOS		
NOMBRE DEL PROYECTO:): "Estudio de estabilización de suelos para fines de mejoramiento aplicando el sistema consolid en el tramo comprendido entre C.P. Batanes y C.P. San Pedro, provincia de Morropón, departamento de Piura."					
UBICACIÓN:	Distrito de Chulucanas, provincia de Morropón, departamento de Piura.					
CALICATA	C 01					
PROGRESIVA		0+5	500			
Muestra	M01	M02	M03	M04		
Formulación líquida (%)	0.045	0.045	0.045	0.045		
Formulación sólida (%)	0.5	1.0	1.5	2.0		
CBR						
CBR al 95% de compactación	9.6	17.7	17.1	23.5		
CBR al 100% de compactación	12.1	22.6	21.0	28.2		

Nota. Elaboración propia (2022).

La siguiente tabla muestra un cuadro resumen de los ensayos proctor y CBR de muestra de suelo (C01) estabilizada con Sistema Consolid.

Tabla 28

Cuadro resumen de proctor y CBR (C01) estabilizada con Sistema Consolid

RESULTADOS DE SUELO + ADITIVO							
LABORATORIO DE M	IECÁNICA DE	SUELOS, CONC	RETO Y PAVIM	ENTOS			
CALICATA		С	01				
PROGRESIVA		0+5	500				
Muestra	M01 M02 M03 M04						
Formulación líquida (%)	0.045	0.045	0.045	0.045			
Formulación sólida (%)	0.5 1.0 1.5 2.0						
Proctor modificado							
Máxima densidad seca (gr/cm3)	1.875	1.899	1.882	1.870			
Humedad óptima (%)	10.6	11.0	10.9	11.1			
CBR							
CBR al 95% de compactación	9.6	17.7	17.1	23.5			
CBR al 100% de compactación	12.1	22.6	21.0	28.2			

4.2.10. Dosificación óptima

Se establece la dosificación óptima del suelo estabilizado con el Sistema Consolid mediante la realización de ensayos físicos y mecánicos.

- La muestra 02 con dosificación 0.045% CONSOLID 444 (formulación líquida)
 +1.0% SOLIDRY (formulación sólida) presenta el máximo valor de la máxima densidad seca = 1.899 g/cm³.
- La muestra 04 con 0.045% CONSOLID 444 (formulación líquida) + 2.0%
 SOLIDRY (formulación sólida) presenta el máximo valor del CBR al 95 y 100%
 de la compactación

Debido a que, el valor del CBR se utiliza para evaluar la resistencia potencial de la subrasante y este es un indicador utilizado en varios métodos de diseño de pavimento, se determina como dosificación óptima la muestra 04 con 0.045% CONSOLID 444 (formulación líquida) +2.0 % SOLIDRY (formulación sólida), la cual presenta el valor máximo del CBR con respecto a las muestras 01, 02 y 03.

4.2.11. Evaluación técnica y comparación del material patrón y la mezcla estabilizada.

Tabla 29 *Material patrón: muestra C01 sin alteración*

CALICATA	C 01
PROGRESIVA	0+500
PROFUNDIDAD (m)	1.5
Proctor modificado	
Máxima densidad seca (gr/cm3)	1.782
Humedad óptima (%)	10.7
CBR	
CBR al 95% de compactación	3.3
CBR al 100% de compactación	5.6

Tabla 30

Muestra estabilizada en diferentes dosificaciones: muestra C01 adicionando aditivo en diferentes dosificaciones M01, M02, M03 y M04

RESULTADOS DE SUELO + ADITIVO							
LABORATORIO DE M	LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS						
CALICATA		С	01				
PROGRESIVA		0+5	500				
Muestra	M01 M02 M03 M04						
Formulación líquida (%)	0.045	0.045	0.045	0.045			
Formulación sólida (%)	0.5 1.0 1.5 2.0						
Proctor modificado							
Máxima densidad seca (gr/cm3)	1.875	1.899	1.882	1.870			
Humedad óptima (%)	10.6	11.0	10.9	11.1			
CBR							
CBR al 95% de compactación	9.6	17.7	17.1	23.5			
CBR al 100% de compactación	12.1 22.6 21.0 28.2						

Nota. Elaboración propia (2022).

- Comparación del material patrón y muestra estabilizada

Tabla 31

Comparación del material patrón con muestra M01, incorporando 0.045% CONSOLID

444 (formulación líquida) + 0.5 % SOLIDRY (formulación sólida)

CALICATA			C 01				
PROGRESIVA			0+500				
Muestra	Patron	Muestra estabilizada M01					
		Formulación líquida (%): 0.045	% en función de	A Dorcontaio	AUMENTA O		
		Formulación sólida (%): 0.5	Λ Porcentale		DISMINUYE		
Proctor modificado							
Máxima densidad seca (gr/cm3)	1.782	1.875	105.22	5.22	AUMENTA		
Humedad óptima (%)	10.7	10.6	99.07	-0.93	DISMINUYE		
CBR							
CBR al 95% de compactación	3.3	9.6	290.91	190.91	AUMENTA		
CBR al 100% de compactación	5.6	12.1	116.07	16.07	AUMENTA		

Tabla 32Comparación del material patrón con muestra M02, incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.0 % SOLIDRY (formulación sólida)

CALICATA			C 01		
PROGRESIVA			0+500		
Muestra	Patron	Muestra estabilizada M02			
		Formulación líquida (%): 0.045	% en función de	Δ Porcentaje	AUMENTA O
		Formulación sólida (%): 1.0	muestra patrón	ΔΡοιτεπιαје	DISMINUYE
Proctor modificado					
Máxima densidad seca (gr/cm3)	1.782	1.899	106.57	6.57	AUMENTA
Humedad óptima (%)	10.7	11.0	102.80	2.80	AUMENTA
CBR					
CBR al 95% de compactación	3.3	17.7	536.36	436.36	AUMENTA
CBR al 100% de compactación	5.6	22.6	303.57	203.57	AUMENTA

Nota. Elaboración propia (2022).

Tabla 33

Comparación del material patrón con muestra M03, incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.5 % SOLIDRY (formulación sólida)

CALICATA			C 01		
PROGRESIVA			0+500		
Muestra	Patron	Muestra estabilizada M03			
		Formulación líquida (%): 0.045	n líquida (%): 0.045 % en función de		AUMENTA O
		Formulación sólida (%): 1.5	muestra patrón	∆Porcentaje	DISMINUYA
Proctor modificado					
Máxima densidad seca (gr/cm3)	1.782	1.882	105.61	5.61	AUMENTA
Humedad óptima (%)	10.7	10.9	101.87	1.87	AUMENTA
CBR					
CBR al 95% de compactación	3.3	17.1	518.18	418.18	AUMENTA
CBR al 100% de compactación	5.6	21.0	275.00	175.00	AUMENTA

Nota. Elaboración propia (2022).

Tabla 34Comparación del material patrón con muestra M04, incorporando 0.045% CONSOLID 444 (formulación líquida) + 2.0 % SOLIDRY (formulación sólida)

•	. ,			•	
CALICATA			C 01		
PROGRESIVA			0+500		
Muestra	Patron	Muestra estabilizada M04			
		Formulación líquida (%): 0.045	% en función de	A Damantaia	AUMENTA O
		Formulación sólida (%): 2.0	muestra patrón	ΔPorcentaje	DISMINUYE
Proctor modificado					
Máxima densidad seca (gr/cm3)	1.782	1.870	104.94	4.94	AUMENTA
Humedad óptima (%)	10.7	11.1	103.74	3.74	AUMENTA
CBR					
CBR al 95% de compactación	3.3	23.5	712.12	612.12	AUMENTA
CBR al 100% de compactación	5.6	28.2	403.57	303.57	AUMENTA

V. DISCUSIÓN DE LOS RESULTADOS

- Del estudio geológico, se observa que los suelos que pertenecen a la zona de investigación, tiene una composición a nivel de superficie, de arcillas de color marrón oscuro con intercalaciones, con arenas de grano medio de color marrón claro y fragmentos de roca volcánica, medianamente compactas. No existe presencia de napa freática.
- Del total de muestras (12) realizadas, a través de la clasificación SUCS se puede decir que, el 8% de la cantidad de muestras extraídas (01) representa al tipo de suelo SM, el 8% de las muestras (01) representa al tipo de suelo CL, el 17% de las muestras (02) representa al tipo de suelo MH, el 67% de las muestras (08) extraídas representa al tipo de suelo CH que corresponde a un tipo de suelo arcilloso de alta plasticidad.

CLASIFICACION SUCS DE TRAMO DE ESTUDIO

CL
8%

MH
17%

CH
67%

Moto Elaborogión prepio (2022)

Figura 16. Clasificación SUCS de tramo de estudio.

Nota. Elaboración propia (2022).

 De los resultados de la clasificación de suelos mediante AASHTO, el 100% de las muestras (12) extraídas representa un suelo MALO.

- De la tabla 16, se puede decir que:
 - La muestra de la calicata C01 es la más desfavorable con respecto a las otras muestras extraídas, teniendo en cuenta el valor más bajo según los resultados obtenidos en el ensayo CBR.
- De la tabla 17 del ensayo de ascensión capilar, se observa que, la probeta 1 con 100% de material nativo colapsó en menos de 4 horas; la probeta 2 tiene un ascenso capilar de 4 cm, la cual se mantiene estable; la probeta 3 tiene un ascenso capilar de 1 cm y se mantiene estable, la probeta 4 tiene un ascenso capilar de 1 cm y la probeta 5 tiene un ascenso capilar de 0.50 cm y se mantiene estable.
- De la tabla 22 de resumen de ensayos de proctor modificado de las muestras estabilizadas, se observa que, la muestra M02, donde se ha incorporado 0.045% CONSOLID 444 (formulación líquida) + 1.0 % SOLIDRY (formulación sólida) se obtiene como máxima densidad seca 1.899 g/cm³ como valor máximo, en comparación de las muestras M01, M03 y M04, lo cual indica que se tiene un suelo de mayor compactación y consolidación de sus partículas.
- De la tabla 27 de resumen de ensayos CBR de las muestras estabilizadas, observamos que, la muestra M04 presenta los valores más altos respecto a las muestras M01, M02 y M03, lo cual indica la máxima capacidad de soporte que el suelo estabilizado puede presentar.
- De la tabla 28 del cuadro resumen de las muestras estabilizadas, se define como dosificación óptima la muestra M04 incorporando 0.045% CONSOLID 444 (formulación líquida) + 2.0 % SOLIDRY (formulación sólida), debido a que posee el valor máximo del CBR con respecto a las otras muestras estabilizadas.

• La muestra de la calicata C04 sin alteraciones tiene como resultado el mayor valor de máxima densidad seca de 1.806 gr/cm³ del ensayo de proctor modificado, CBR al 95% y 100% de compactación con valores de 10.6 y 13.1, respectivamente, de todas las muestras (12) extraídas. Siendo estos los valores máximos obtenidos en los ensayos de proctor y CBR de muestras sin alteración, podemos observar que, las muestras alteradas M01, M02, M03 y M04 sobrepasan los valores de máxima densidad seca respecto a la muestra de calicata C04 (sin alterar) siendo estos 1.875, 1.899, 1.882, 1.870 gr/cm3, respectivamente. Con respecto al CBR, se observa el incremento del valor en las muestras con aditivo M02 de 17.7 al 95% y 22.6 al 100%, M03 de 17.1 al 95% y 21 al 100%; M04 de 23.5 al 95% y 28.2 al 100%.

Tabla 35

Comparación de la muestra natural C04 con muestras estabilizadas con Sistema Consolid M01, M02, M03 y M04.

Calicata	C04		C01						
	Muestra natural	Muestra estabilizada							
Muestra	C 04	M01	M02	M03	M04				
Proctor modificado									
Máxima densidad seca (gr/cm3)	1.806	1.875	1.899	1.882	1.870				
Humedad óptima (%)	11.7	10.6	11.0	10.9	11.1				
CBR									
CBR al 95% de compactación	10.6	9.6	17.7	17.1	23.5				
CBR al 100% de compactación	13.1	12.1	22.6	21.0	28.2				

- De la tabla 31, la muestra de la calicata C01 definida como la más desfavorable de las 12 muestras extraídas, deducimos que, la muestra estabilizada con aditivo M01 al 0.045% CONSOLID 444 (formulación líquida) + 0.5 % SOLIDRY (formulación sólida) aumenta en 5.22% en su máxima densidad seca, disminuye en 0.93% en su humedad óptima, aumenta 190.91% del CBR al 95% de compactación, aumenta 16.07% del CBR al 100% de compactación.
- De la tabla 32, la muestra de la calicata C01 definida como la más desfavorable
 de las 12 muestras extraídas, deducimos que, la muestra estabilizada con

aditivo M02 al 0.045% CONSOLID 444 (formulación líquida) + 1.0 % SOLIDRY (formulación sólida) aumenta en 6.57% en su máxima densidad seca, aumenta en 2.80% en su humedad óptima, aumenta 436.36% del CBR al 95% de compactación, aumenta 203.57% del CBR al 100% de compactación.

- De la tabla 33, la muestra de la calicata C01 definida como la más desfavorable de las 12 muestras extraídas, se observa que, la muestra estabilizada con aditivo M03 al 0.045% CONSOLID 444 (formulación líquida) + 1.5 % SOLIDRY (formulación sólida) aumenta en 5.61% en su máxima densidad seca, aumenta en 1.87% en su humedad óptima, aumenta 418.18% del CBR al 95% de compactación, aumenta 175% del CBR al 100% de compactación.
- De la tabla 34, la muestra de la calicata C01 definida como la más desfavorable de las 12 muestras extraídas, observamos que, la muestra estabilizada con aditivo M04 al 0.045% CONSOLID 444 (formulación líquida) + 2.0 % SOLIDRY (formulación sólida) aumenta en 4.94% en su máxima densidad seca, aumenta en 3.74% en su humedad óptima, aumenta 612.12% del CBR al 95% de compactación, aumenta 303.57% del CBR al 100% de compactación.

CONCLUSIONES

- Del estudio geológico, se concluye que, la composición del suelo pertenece a arcillas de color marrón oscuro con intercalaciones, con arenas de grano medio de color marrón claro y fragmentos de roca volcánica, medianamente compactas. No existe presencia de napa freática.
- De las muestras extraídas (12), según el sistema de clasificación SUCS, se concluye que, existen 04 tipos de suelos: SM, CL MH, CH, prevaleciendo en mayor porcentaje un tipo de suelo arcilloso de alta plasticidad.
- De las muestras extraídas (12), según el sistema de clasificación AASHTO, el
 100% de las muestras extraídas representa un suelo MALO.
- De las 12 muestras extraídas (12) se consideró la muestra de la calicata C01 como la más desfavorable respecto a las otras, debido a los resultados obtenidos en el ensayo del CBR, siendo 3.3 al 95% y 5.6 al 100% los valores más bajos.
- Del ensayo de ascensión capilar, se concluye que: la probeta 1 con 100% de material nativo colapsó en menos de 4 horas; la probeta 2 tiene un ascenso capilar de 4 cm, la cual se mantiene estable; las probetas 3,4 y 5 presentan buena estabilidad y buen control del ascenso capilar, teniendo como resultado un suelo prácticamente impermeable.
- Del ensayo de proctor modificado de la muestra estabilizada se concluye que, la muestra M02 incorporando 0.045% CONSOLID 444 (formulación líquida) + 1.0 % SOLIDRY (formulación sólida) se obtiene como máxima densidad seca 1.899 g/cm³ como valor máximo, en comparación de las muestras M01, M03 y M04, lo cual indica que se tiene un suelo de mayor compactación y consolidación de sus partículas.

- Del ensayo de CBR de la muestra estabilizada, se concluye que, la muestra M04 incorporando 0.045% CONSOLID 444 (formulación líquida) + 2.0 % SOLIDRY (formulación sólida) presenta los valores más altos respecto a las muestras M01, M02 y M03, lo cual indica la máxima capacidad de soporte que el suelo estabilizado puede presentar.
- Se concluye como dosificación óptima la muestra M04 incorporando 0.045%
 CONSOLID 444 (formulación líquida) + 2.0 % SOLIDRY (formulación sólida),
 debido a que posee el valor máximo del CBR con respecto a las otras muestras estabilizadas.
- De las muestras estabilizadas con Sistema Consolid en sus diferentes dosificaciones, se concluye que, la estabilización con Sistema Consolid aumenta considerablemente la máxima densidad seca y CBR.

RECOMENDACIONES

- Se recomienda realizar ensayos de proctor y CBR de muestras adicionando
 Sistema Consolid, de acuerdo a cada tipo de suelo en un tramo de estudio.
- Se recomienda realizar un estudio de topografía para fines de diseño geométrico de la vía con fines futuros de colocación de pavimento rígido o flexible.
- Se recomienda realizar mayor cantidad de extracción de muestras de suelo (calicatas) para generar una data más amplia para fines de aplicación como proyecto de mejoramiento en esta zona de estudio.

 Se recomienda realizar un estudio hidrológico para profundizar a detalle respecto a la drenabilidad de la vía, para fines aplicativos a proyectos futuros de la zona de estudio.

REFERENCIAS BIBLIOGRÁFICAS

- Afrin, H. (2017). Review on Different Types Soil Stabilization Techniques.International Journal of Transportation. *Engineering and Technology*, 3, 19- 24. https://scholar.google.com.pe/scholar?as_vis=1&q=A+Review+on+Different+T ypes+Soil+Stabilization+Techniques&hl=es&as_sdt=0,5
- Aguirre, J. y Prado, M. (2012). Estabilización de la subrasante en la vía CuicochaApuela del KM 38, Cantón Cotacachi, Provincia de Imbabura, utilizando el Sistema Consolid. [Tesis de pregrado, Pontifica Universidad del Ecuador]
- ASTM D 1883: Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils.
- ASTM D 422: Standard Test Method for Particle-Size Analysis of Soils
- ASTM D 4429: Standard Test Method for CBR (California Bearing Ratio) of Soils in Place.
- Consolid Bolivia Ltda (1995). Manual técnico del sistema Consolid. Santa Cruz de la sierra
- Consolid Productos Viales, (2016). El Sistema Consolid.
- Crespo, C. (2004). Mecánica de suelos y cimentación. (5ta ed.). México: Limusa,
- Dias, L. y Torrecilla, R. (2002). Arcillas cerámicas: una revisión de sus distintos tipos, significados y aplicaciones. Bol. Soc. Esp. Cerám. Vidrio, 41 (5), 459-470
- Díaz, J. (2018). Estudio de estabilización de suelos con el sistema Consolid para mejorar el camino vecinal Yántalo C.P.M. Buenos Aires, Moyobamba –San Martín, 2016 [Tesis de pregrado, Universidad Cesar Vallejo, Tarapoto, Perú]
- Flores, E. (2021). Evaluación de las propiedades del suelo a nivel de sub rasante estabilizando con sistema consolid, en la carretera ap-104 Andahuaylas -24 Apurímac, 2021 [Tesis de pregrado, Universidad Cesar Vallejo]

- Gálvez, C. y Vásquez, M. (2019). Normas de diseño geométrico vial en Sudamérica aplicado a vías de evitamiento en el Perú [Tesis de pregrado,Universidad Ricardo Palma, Lima, Perú]
- Herrera, R, (2016). El sistema de impermeabilización y estabilización química de suelos CONSOLID. Informe Técnico. Sistema.
- Huaman, F. y Rojas, Y. (2019). *Análisis del uso del Sistema Consolid, para el mejoramiento de base granular existente, en una pista de aterrizaje, Chanchamayo,2019* [Tesis de pregrado, Universidad Cesar Vallejo, Lima, Perú]
- Huamán, G. (2014). Propuesta de fortalecimiento en la metodología de determinación del valor referencial para el mantenimiento rutinario camino vecinal, tramo: Ricran tambillo [Tesis de pregrado, Universidad Nacional del Centro del Perú, Huancayo.
- Manual CONSOLID (2011). Recuperado en www.CONSOLIDSUD.CH
- MTC (2008). Manual para el diseño de carreteras pavimentadas de bajo volume de tránsito.
- MTC (2013). Manual De Carreteras Suelos, Geología, Geotecnia Y Pavimentos
- MTC (2016). Manual de ensayo de materiales
- MTC (2018). Glosario De Términos" De Uso Frecuente En Proyectos De Infraestructura Vial.
- Norma CE.020. Estabilización de suelo y taludes
- NTP 339.127.1999. Determinación del contenido de Humedad de un suelo.
- NTP 339.129.1999. Análisis granulométrico de suelos por tamizado
- NTP 339.129: SUELOS. Método de ensayo para determinar el límite líquido, 25 límite plástico e índice de plasticidad de suelos.
- NTP 339.135 1999. Método para la clasificación de suelos para uso en vías de transporte

- NTP 339.141: Suelos. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada
- NTP 339.142: Suelos. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía estándar
- NTP 339.147, 2000. Método de ensayo de permeabilidad de suelos granulares (carga constante)
- NTP 339:143. 1999. Ensayo para determinar la densidad y peso unitario del suelo insitu mediante el método de cono de arena.
- NTP 400.019: Agregados. Método de ensayo normalizado para la determinación de la resistencia a la degradación en agregados gruesos de tamaños menores por Abrasión e Impacto en la Máquina de Los Ángeles.
- NTP 400.021: Método de ensayo normalizado para peso específico y absorción del agregado grueso.
- Ravines, M. (2010). *Pruebas con un producto enzimático como agente estabilizador de suelos para carreteras* [Tesis de pregrado, Universidad De Piura]

ANEXOS

INFORME DE ENSAYOS – CALICATA 01

LABORATORIO DE SUEL OS Y PAVIMENTOS CJK OBRAS CIVILES - PROYECTOS Y SUPERVISION GERENTE: CHALINGER OBREGON FLORES

email: chaling er@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 2060713452

Dirección: calle Javier prado mz b 13 t 27 A.H. San Martin.26 octubre- Piura

REGISTRO DE EXCAVACION NORMA TECNICA: ASTMID 2488 LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS : ESTUDIO DE ESTABLIZACION DE SUELOS PARAFINES DE MEJORAMIENTO APUCANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATWIESA C.P. SAN PEDR O PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA OBRA FECHA DE MUESTREO : 30/01/2022 TRAMO CARRETERA BATANES A SAN PEDRO TEC. LABORATORIO: CHALINGER OF CANTERA N.G. RESPONSABLE: WILMER CORDOVA. MATERIAL FECHA DE ENSAYO : 05/02/2022 : CALICATA 01 UBICA CIÓN N° DE REGISTRO : CJK002410 DAT OS DE LA MUESTRA CALICATA

MUESTRA : N 01 5999 57 PROF. (m) : 1.5 943 1702

REGISTRO DE EXCAVACION DE CALICATAS

			ESTRATO		CLASI	F.	GR	ANUL OMETI	AB				
PROF.	M	GRAFICO	Espesor (CM)	CARACTERISTICAS GEOTECNICAS	ААЯНТО	sucs	3" A Nro. 4	Nro. 4 8 Nro. 200	Menor Nro. 200	LL	LP.	I.P.	NAT.
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80		Мн	1.8	De 0.00 a 0.50 mt se encontro un suelo contaminado com grava y materia organica usado como capa de rodadura en la actualidad. De 0.50 a 1.5 mt se encuentra el suelo natural MH; Limo con ancilla y arena con material variable de alta plastica, con humedad de 9.9% con cementacion de moderada a alta, que representa el 28.2% del suelo; Finos que representa el 27.3% del suelo. El estrato es de estructura homogenea, de compacidad alta, de color marron claro.	A-7-5 1(7)	мн	0.5	28.2	71.3	55.8	33.8	22.0	9.9

Challenger Obringen Flore, Therice on Laboratoric in Studies

TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 358 9

RUC 20607134520

Dirección: calle Javier prado mz bi13 lt 27 A.H. San Martin.26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D-422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO PROYECTO

EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO,PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO

CANTERA

DESCRIPCION: CALIC AT A 01 UB. M UESTR #: KM 0+500

CALICATA

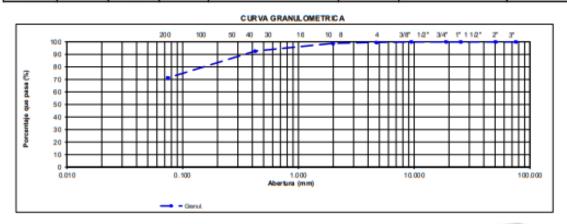
MUESTRA

POE (m)

FECHADE MUESTREO: 30/01/2022 TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILMER CORDOVA.

FECHA DE ENSAYO: 05/02/2022

Nº DEREGISTRO : CJK002-110


DAT	OS	DE	LA	UES	TRA	

TAM AÑO MAXIM O

Peso inicial seco:

PROF. (m)	:1.5		Fraccion Fina 332.5									
TANIZ	AASHTOT-27	PESO .	PORCENTAJE	RETENIDO	PORCENTAJE	ESPECIFICACION	DESCRIPCI	ON DE LA M	UESTRA			
174MZ	(mm)	RETENIDO	RETENIDO	ACUMULADO	QUE PASA							
3*	76.200						Contenido de Humedad (*	%):	9.92			
2"	50.800						Peso de la Tara (g):		0.00			
1 1/2"	38.100						Peso Tara+Suelo Hum (g):	365.5			
1"	25,400						Peso Tara+Suelo Sec.(g)		332.5			
3/4"	19.000						Pesodel Agua (g):		33.0			
1/2"	12,500						Peso del Suelo Seco (g):		332.5			
3/8"	9.500											
1/4"	6.350											
Nº 4	4.750	1.5	0.5	0.5	99.5							
Nº8	2360											
Nº 10	2000	2.7	0.8	13	98.7		Descripción	A-7-5(17)	MALO			
№ 16	1.190						(AASHTO):	W(-0(11)	miraco			
№ 20	0.840	8.0	2.4	3.7	96.3		Descripción	Limo de altera	asticidad con arena			
Nº 30	0.600						(SUCS):	amode adapt	as octood corn are no			
№ 40	0.425	12.4	3.7	7.4	92.6		OBSERVACIONES:					
Nº 50	0.300											
Nº 80	0.177						Bdoneria > 3" :		0.0			
Nº 100	0.150	40.6	12.2	19.5	80.5		Grava 3" - Nº 4 :		0.5			
Nº 200	0.075	30.6	9.2	28.7	71.3		Arena Nº4 - Nº 200 :		28.2			
< Nº 200	FONDO	238.2	71.3	100.0			Finos < Nº 200 :		71.3			

CARACTERÍSTICA FÍSICA Y QUÍMICA DE LA MUESTRA										
Limite liquido (%)		55.8								
Limite Plastico (%)		33.8								
Índice plástico (%)		22.0								
Clasificación: SUCS.	MH									
AASHTO	A-7-5 (17)								
Cu	Ce									

Chalinger Obregon Flore Técnice de Laboratorio de Suelos TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmailes

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 35 89

RUC 20607134520

Dirección: calle Javier prado mz bi13 lt27 A.H. San Martin 26 octubre- Piura

TEC. LABORATORIO: CHALINGER OF

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE FECHA DE MUESTRED : 30/01/2022 MORR OPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO

CANTERA


ING. RESPONSABLE: WILMER CORDOVA. FECHA DE ENSAYO: 07/02/2022 DESCRIPCION : CALICATA 01 UB. MUESTRA: KM 0+500 Nº DE REGISTRO: CJK003-110

DATOS DE LAMUESTRA CALICATA :C-1

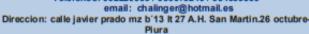
MUESTRA :N° 01 PROF. (m)

LIMITE LIQUIDO										
N° TARRO		1	2	3						
PESO TARRO + SUELO HUMEDO	(g)	55.36	51.48	52.47						
PESO TARRO + SUELO SECO	(g)	40.63	37.52	37.43						
PESO DE AGUA	(g)	14.73	13.96	15.04						
PESO DEL TARRO	(g)	12.36	12.42	12.72						
PESO DEL SUELO SECO	(g)	28.3	25.1	24.7						
CONTENIDO DE HUMEDAD	(%)	52.1	55.6	60.9						
NUMERO DE GOLPES		36	26	15						

LMITE PLASTICO									
1	2								
18.56	19.24								
15.47	15.91								
3.1	3.3								
6.25	6.14								
9.2	9.8								
33.5	34.1								
	15.47 3.1 6.25 9.2	1 2 18.56 19.24 15.47 15.91 3.1 3.3 6.25 6.14 9.2 9.8	15.47 15.91 3.1 3.3 6.25 6.14 9.2 9.8						

CONSTANTES FISIC AS DE LA MUESTRA							
LIMITE LIQUIDO	55.8						
LIMITE PLASTICO	33.8						
INDICE DE PLASTICIDAD	22.0						

Chalinger Obragon Flore. Tienles de Laboratorio de Suelos TECNICO DE LABORATORIO


AND CORDOVA CORDOVA ING. RESPONSABLE

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS **OBRAS CIVILES - PROYECTOS Y SUPERVISION**

Teléfonos: 992220059 / 969678249 / 954983589

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

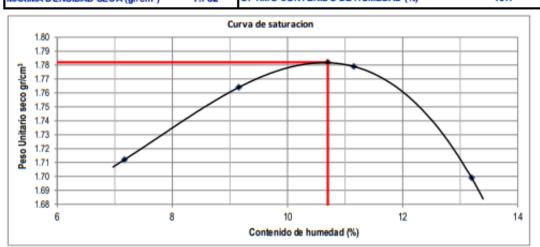
ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO OBRA Nº REGISTRO

TÉCNICO CHALINGER O.

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA. CALICATA

ING. RESP. 04/02/2022 FECHA E

WILMER CORDOVA


30/01/22 FECHAM.

HECHO POR

CHALINGER O.

CJK 4 - 110

		COMPACTA	CIÓN		
MÉTODO DE COMPACTACIÓ :	-A-				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3		
PESO (SUELO + MOLDE) (gr)	5418.0	5502.0	5550.0	5500.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1707	1791	1839	1789	
VOLUMEN DEL MOLDE (cm ³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ⁵)	1.835	1.925	1.977	1.923	
DENSIDAD SECA (gr/cm ³)	1.712	1.764	1.779	1.699	
		CONTENIDO DE	HUMEDAD		-
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	364.8	437.6	598.1	476.9	
PESO (SUELO SECO + TARA) (gr)	340.4	400.9	538.1	421.3	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	24.4	36.7	60.0	55.6	
PESO DE SUELO SECO (gr)	340.4	400.9	538.1	421.3	
CONTENIDO DE HUMEDAD (%)	7.2	9.2	11.2	13.2	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.782	ОРТІМО СОМТ	ENIDO DE HU	MEDAD (%)	10.7

Chalinger Obregon Flore. Técnico de Laboratorio de Sualos Lies Obrida po Cobrook a Corpo la dissemble Corpo Reg. Cologo de Tiguesta de Parto

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

email: chalinger@hotmail.es

Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO

PROVINCIA DE MORROPON DEPARTAMENTO DE PIJRA.

N° REG. CJK 5 - 110 CHALINGER O. TÉC NICO

WILMER CORDOVA ING. RESP.

04/02/22 F. INICIO

F. FINAL	08/02/22

					DENSID	AD SECA						
Molde N°:				01			2			3		
N° de capa	S:			5			5			5		
N° de galpe	s por capa:			56			25			12		
Condición d	e la muestra:			Sumerg	ida		Sumergida			Sumergida		
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	Sin Saturar		
Peso molde	+ suelo húm	nedo	124	15	12550	1	2094	12316	12040)	12311	
Peso del m	olde		82	58	8258	8	3165	8165	8300		830	
Volumen de	el molde		210	8.1	2108.1	2	114.0	2114.0	2094.	7	2094	
% de hume	dad		10.	68	14.24		10.7	16.70	10.7		18.3	
Densidad s	eca		1.7	82	1.782	1	.679	1.683	1.613		1.61	
					CONTENIDO	DE HUME	DAD					
Tarro N°												
Tarro + sue	lo húmedo		356	3.5	346.5	3	59.2	268.3	297.9)	3023	
Tarro + sue	lo seco		322	2.1	303.3	3	24.5	229.9	269.1		255	
Peso del ag	jua		34	.4	43.2		34.7	38.4	28.8		46	
Peso de tar	ro											
Peso del su	elo seco		322	2.1	303.3	3	24.5	229.9	269.1		255	
% de hume	dad		10.7	7%	14.2%	1	0.7%	16.7%	10.7%		18.49	
					EXPA	NSIÓN						
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPAN	ISIÓN	LECT.	LECT. EX		
dd/mm/aa		h	dial	mm	%	dial	mm	%	dial	mm	%	
04/02/22	15:30	0	0.0			0.0			0.0			
05/02/22	15:30	24	199.0	1.99	1.57	215.0	2.15	1.69	225.0	2.25	1.77	
06/02/22	15:30	48	256.0	2.56	2.02	289.0	2.89	2.28	301.0	3.01	2.37	
07/02/22	15:30	72	354.0	3.54	2.79	376.0	3.76	2.96	426.0	4.26	3.35	
08/02/22	15:30	96	486.0	4.86	3.83	502.0	5.02	3.95	573.0	5.73	4.51	
					С	BR						
DENETDA	CIÓN (x10 ⁴)	Carga	_	MOLDEN	√° 01		MOLDE N°	2	N	OLDE N	3	
PENETION	CION (XIO)	Estándar	Lectura	Co	rrección	Lectura	Соте	oción	Lectura	C	arrección	
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	dial	Kg	Kg/cm2	dial	Kg	Kg/cm2	
0.635	0.025		9	9	0.4	4	4	0.2	2	2	0.1	
1.270	0.050		22	22	1.1	10	10	0.5	7	7	0.3	
1.905	0.075		49	49	2.4	30	30	1.5	15	15	0.7	
2.540	0.100	70.31	68	68	3.4	46	46	2.3	27	27	1.3	
3.810	0.150		89	89	4.4	58	58	2.9	38	38	1.9	
5.080	0.200	105.46	123	123	6.1	80	80	3.9	49	49	2.4	
6.350	0.250		198	198	9.8	102	102	5.0	62	62	3.1	
7.620	0.300		268	268	13.2	146	146	7.2	89	89	4.4	
10.160	0.400		306	306	15.1	186	186	9.2	106	106	5.2	
12.700	0.500		345	345	17.0	192	192	9.5	130	130	6.4	

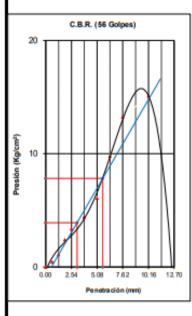
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

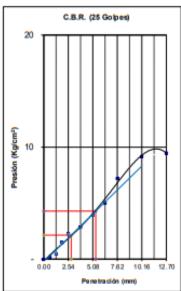
email: chalinger@hotmail.es Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubre - Piura

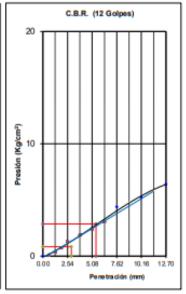
PROYECTO

APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE Nº REG. C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

DEPARTAMENTO DE PILIRA

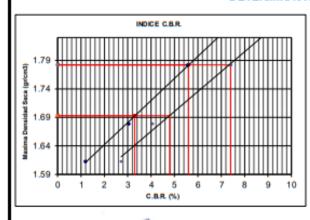

MUESTRA


CJK 5- 110 CHALINGER O. WILMER CORDOVA ING. RESP.


FECHA DE MUESTREO 04/02/22

FECHA DE ENSAYO 08/02/22

GRÁFICO PENETRACIÓN DE CBR



CBR 0.1" (%)= 5.6 CBR 02" (%)= 7.4 Densidad Seca (gr/cc): 1.782

CBR 0.1" (%)= 3.0 CBR 0.2" (%)= 4.1 Densidad Seca (gr/cc) : 1.679 CBR 0.1" (%)= 1.2 CBR 0.2" (%)= 2.7 Densidad Seca (gr/cc) : 1.613

DETERMINACIÓN DEL CBR

Datos de Proctor:

Densidad Seca 100%	1.782	gr/cm3
Óptimo Humedad	10.70	%
Densidad Seca 95%	1.693	gr/cm3

C.B.R. (95% M.D.S.) 0.1":	3.3
C.B.R. (100% M.D.S.) 0.1":	5.6
C.B.R. (100% M.D.S.) 0.1": C.B.R. (95% M.D.S.) 0.2": C.B.R. (100% M.D.S.) 0.2":	4.8
C.B.R. (100% M.D.S.) 0.2":	7.4

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

INFORME DE ENSAYOS - CALICATA 02

LABORATORIO DE SUELOS Y PAVIMENTOS CJK OBRAS CIVILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

REGISTRO DE EXCAVACION

NORMATEONICA: ASTM D 2488

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMENTO APLICANDO EL SISTEMA CONSCUID EN EL TRAMO ENTRE EL C.P. BATANES AC.P. SAN PEDRO, PROVINCIA DE MORROPON. OBRA

DEPARTAMENTO DE PIURA.

TRAMO

CANTERA MATERIAL CALICATA 02

UBICACIÓN : KM 3+500

CARRETERA BATANES A SAN PEDRO

ING. RESPONSABLE: WILWER CORDOVA. FECHA DE ENSAYO: 0502/2022 Nº DE REGISTRO: CJK002-111

FECHA DE MUESTREO: 3001/2022

TEC. LABORATORIO: CHALINGER O.F.

DATOS DE LAMUESTRA

: C-2 MUESTRA : N° 01 PROF. (m) 1.5

COORDENADAS 9433593

REGISTRO DE EXCAVACION DE CALICATAS

			ESTRATO		CLASI	F.	GR	ANULOMET	MA		LIMTES		
PROF.	M.	GRAFICO	Espesor (CM)	CARACTER ISTICAS GEOTECNICAS	AASHTO	sucs	3" A Nro. 4	Mrc. 4 8 Mrc. 200	Menor Nro. 200	LL	LP.	LR	HUM. NAT.
0.00													
0.20													
0.40													
0.60													
0.80				De 0.00 a 0.50 mt se encontro un suelo contaminado con grava y materia									
1.00				organica usado como capa de rodadura									
1.20		МН		en la actualidad. De 0.50									
1.40				a 1.5 mt se en cuentra el suelo natural MH;									
1.60			1.5	Limo con arcilla y arena con material variable de alta plastica, con humedad de	A-7-5 2(0)	MH	0.0	17.0	83.0	57.8	36.9	20.9	10.3
				10.3% con cementación de moderada a									
1.80				alta. que representa el 17% del suelo;									
2.00				Finos que representan el 83% del suelo. El									
2.20				estrato es de estructura homogenea, de compacidad alta, de color marron claro.									
2.40				compactuate ana, or color marion claro.									
2.60													
2.80													
3.00													

Chalanger Obergion Flore. Tecnico de Laboratorio de Sualas TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 059 / 9 696 782 49 / 95 498 358 9

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D-422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO

EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PROYECTO

PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

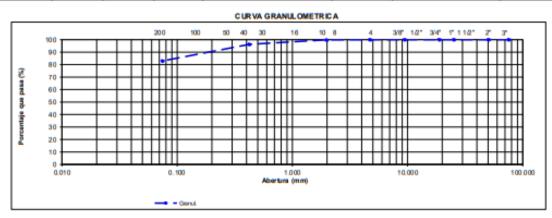
: CARRETERA BATANES A SAN PEDRO TRAM O

CANTERA

DESCRIPCION: CALIC AT A 02 UB. M UESTR #: KM 3+500

FECHADE MUESTREO: 30/01/2022 TEC. LABORATORIO: CHALINGER O.F

ING. RESPONSABLE: WILMER CORDOVA.


FECHA DE ENSAYO : 05/02 N° DE REGISTRO : CJK002-111

DATOS DE LA MUESTRA

CALICATA TAM AÑO MAXIM O N" 01 MUESTRA Peso inicial seco : 3313 Fraccion Fina 3313 PROF. (m) 1.5

TAMIZ	AASHTOT-27	PESO	PORCENTAJE	RETENIDO	PORCENTAJE	ESPECIFICACION	DESCRIP	CION DE LA MU	ESTRA
174HZ	(mm)	RETENIDO	RETENIDO	ACUMULADO	QUE PASA				
3*	76.200						Contenido de Humedao	1 (%) :	10.29
2*	50.800						Peso de la Tara (g):		0.00
1 1/2"	38.100						Peso Tara+Suelo Hum	(g):	365.4
1"	25,400						Peso Tara+Suelo Sec.i	(g):	331.3
3/4"	19.000						Pesodel Agua (g):		34.1
1/2"	12500						Peso del Suelo Seco (g	i):	331.3
3/8"	9.500								
1/4"	6.350								
Nº 4	4.750	0.0	0.0	0.0	100.0				
Nº8	2360								
Nº 10	2000	0.5	0.2	0.2	99.8		Descripción	A-7-5(20)	MALO
Nº 16	1.190						(AASHTO):	A-1-0(20)	MINALO
Nº 20	0.840	4.8	1.4	1.6	98.4		Descripción	Limoda altanlar	sticidad con arena
Nº30	0.600						(SUCS):	unio de atalpras	rocked con a ena
Nº 40	0.425	7.0	2.1	3.7	96.3		OBSERVACIONES:		
Nº 50	0.300								
Nº 80	0.177						Bdoneria > 3" :		(
Nº 100	0.150	14.0	4.2	7.9	92.1		Grava 3* - N° 4 :		(
Nº 200	0.075	30.1	9.1	17.0	83.0		Arena Nº4 - Nº 200 :		1
< Nº 200	FONDO	274.9	83.0	100.0			Finos < Nº 200 :		83

			CARACT	ERISTICA FI	SICA Y	QUÍMICA (DE LA MUESTI	RA	
Limite liquido	(%)		57.8						
Limite Plastico	(%)		36.9						
Indice plástico	(%)		20.9						
Clasificación:	SUCS.	M	H						
	AASHTO	A-7-5	(20)						
Cu		Cc							

Chalinger Obregon Flore. Técnice de Labaratorio de Sueles TECNICO LABORATORIO

Las begat to change of

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 35 89

Dirección: calle Javier prado mz bi13 lt 27 A.H. San Martin 26 octubre - Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL

PROYECTO

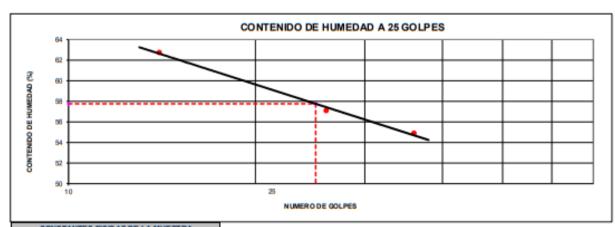
SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE FECHA DE MUESTREO : 30/01/2022 MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO

CANTERA

ING. RESPONSABLE: WILKER CORDOVA FECHA DE ENSAYO: 07/02/2022

TEC. LABORATORIO : CHALINGER OF


DESCRIPCION: CALICATA 02 UB. MUESTRA: KM 3+500 Nº DE REGISTRO: CJK003-111

DAT	OS.	DE	LAM	UES	TRA

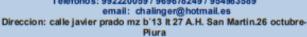
CALICATA :C-2 MUESTRA :N° 01 PROF. (m) 1.5

	LIMITE LIQUIDO										
N° TARRO	4	5	6								
PESO TARRO + SUELO HUMEDO (g)	54.89	53.98	54.12								
PESO TARRO + SUELO SECO (g)	39.89	38.99	38.07								
PESO DE AGUA (g)	15.00	14.99	16.05								
PESO DEL TARRO (g)	12.57	12.74	12.49								
PESO DEL SUELO SECO (g)	27.3	26.3	256								
CONTENIDO DE HUMEDAD (%)	54.9	57.1	62.7								
NUMERO DE GOLPES	36	26	14								

	LMITE PLASTICO									
Nº TARRO	3	4								
PESO TARRO + SUELO HUMEDO (g	18.56	19.24								
PESO TARRO + SUELO SECO (g	15.47	15.91								
PESO DE AGUA (g	3.1	3.3								
PESO DEL TARRO (g	7.10	6.90								
PESO DEL SUELO SECO (g	8.4	9.0								
CONTENIDO DE DE HUMEDAD (9	36.9	37.0								

CONSTANTES FISIC AS DE LA MUE	STRA
LIMITE LIQUIDO	57.8
LIMITE PLASTICO	36.9
INDICE DE PLASTICIDAD	20.9

Chaitner Obiegon Flore Técnico de Laboratorio de Suelos TECNICO DE LABORATORIO


CHOSENERO CIVIL ING. RESPONSABLE

CALICATA FECHAM.

30/01/22

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

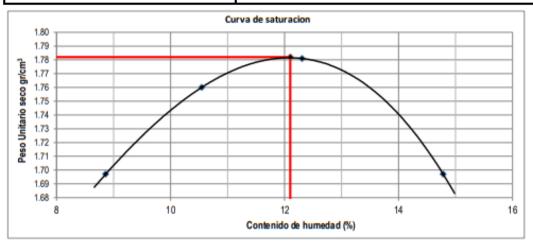
LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO OBRA

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

ING. RESP. FECHA E


TÉCNICO

Nº REGISTRO CJK 4 - 111 CHALINGER O.

WILMER CORDOVA

04/02/2022 CHALINGER O. HECHO POR

		COMPACTA	ACIÓN		
MÉTODO DE COMPACTACIÓ :	-A-				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3		
PESO (SUELO + MOLDE) (gr)	5429.0	5521.0	5572.0	5523.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1718	1810	1861	1812	
VOLUMEN DEL MOLDE (cm ³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ³)	1.847	1.946	2.001	1.948	
DENSIDAD SECA (gr/cm ³)	1.697	1.760	1.781	1.697	
		CONTENIDO DE	HUMEDAD		-
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	500.0	500.0	500.0	500.0	
PESO (SUELO SECO + TARA) (gr)	459.3	452.3	445.2	435.6	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	40.7	47.7	54.8	64.4	
PESO DE SUELO SECO (gr)	459.3	452.3	445.2	435.6	
CONTENIDO DE HUMEDAD (%)	8.9	10.5	12.3	14.8	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.782	ОРТІМО СОМТ	ENIDO DE HU	MEDAD (%)	12.1

Chalinger Obregon Flore. Técnico de Laboratorio de Suelos

William Object to Colorova Conjora Grandel Market Colorova Reg. Colorova de Transactura y paren

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS **OBRAS CIVILES - PROYECTOS Y SUPERVISION** Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b´13 lt 27 A.H. San Martin.26 octubre-

Piura

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO

CJK 5 - 111

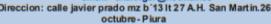
PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

TÉCNICO CHALINGER O.

WILMER CORDOVA ING. RESP. 04/02/22 F. INICIO

N° REG.

08/02/22 F. FINAL

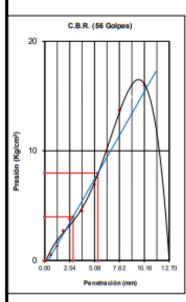

					DENSID	AD SECA					
Molde N°:				4			5			6	
N° de capa	8:			5			5		5		
N° de galpe	es por capa:		56				25		12		
Condición d	le la muestra	:	Sumergida				Sumergida		Sumergida		
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado
Peso molde	+ suelo hún	nedo	126	33	12786	12	2220	12468	12173	3	1245
Peso del m	olde		846	8469		8	325	8325	8419		841
Volumen de	el molde		2098.3 2098.		2098.3	21	109.5	2109.5	2094.	5	2094
% de hume	dad		12.	21	16.41	1	12.1	19.16	12.2		21.2
Densidad s	eca		1.7	69	1.767	1.	.647	1.648	1.597	,	1.58
					CONTENIDO	DE HUME	DAD				
Tarro N°											
Tarro + sue	lo húmedo		500).0	500.0	5	0.00	500.0	500.0)	500
Tarro + sue	lo seco		445	5.6	429.5	4	45.9	419.6	445.6	445.6	
Peso del ag	jua		54	4	70.5		54.1	80.4	54.4		87.
Peso de tar	то										
Peso del su	ielo seco		445	5.6	429.5	4	45.9	419.6	445.6	,	4123
% de hume	dad		12.2	2%	16.4%	12	2.1%	19.2%	12.2%	12.2% 2	
					EXPA	NSIÓN					
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN LECT. EXPANSIÓN		ISIÓN	LECT.	PANSIÓN		
dd/mm/aa		h	dial	mm	%	dal	mm	%	dial	mm	%
04/02/22	15:30	0	0.0			0.0			0.0		
05/02/22	15:30	24	201.0	2.01	1.58	220.0	2.20	1.73	236.0	2.36	1.86
06/02/22	15:30	48	269.0	2.69	2.12	296.0	2.96	2.33	315.0	3.15	2.48
07/02/22	15:30	72	349.0	3.49	2.75	389.0	3.89	3.06	435.0	4.35	3.43
08/02/22	15:30	96	480.0	4.80	3.78	509.0	5.09	4.01	569.0	5.69	4.48
					C	BR					
	makes a sector	Carga		MOLDE	N° 4		MOLDE N°	5	ħ.	OLDE N	' 6
PENETRA	CIÓN (x101)	Estándar	Lectura	Co	rrección	Lectura	Соте	oción	Lectura	С	orrección
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	dial	Kg	Kg/cm2			Kg/cm2
0.635	0.025		11	11	0.5	7	7	0.3	5	5	0.2
	0.050		28	28	1.4	19	19	0.9	16	16	0.8
1.270			56	56	2.8	41	41	2.0	32	32	1.6
1.270	0.075			78	3.8	53	53	2.6	46	46	2.3
	0.075	70.31	78	/ 0							
1.905		70.31	78 93	93	4.6	71	71	3.5	62	62	3.1
1.905 2.540	0.100	70.31 105.46				71 96	71 96	3.5 4.7	62 80	62 80	3.1
1.905 2.540 3.810	0.100 0.150		93	93	4.6	96	96				
1.905 2.540 3.810 5.080 6.350	0.100 0.150 0.200 0.250		93 142 203	93 142 203	4.6 7.0 10.0	96 123	96 123	4.7 6.1	80 118	80 118	3.9 5.8
1.905 2.540 3.810 5.080	0.100 0.150 0.200		93 142	93 142	4.6 7.0	96	96	4.7	80	80	3.9

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26

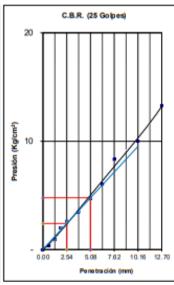
ROYECTO

MUESTRA

APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE


C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA

Nº REG. CJK 5- 111 TÉCNICO CHALINGER O.


ING. RESP. WILMER CORDOVA

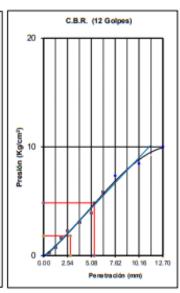
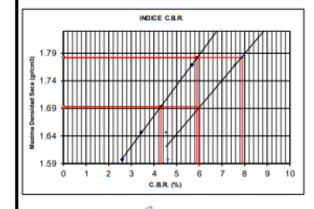

FECHA DE MUESTREO 04/02/22 FECHA DE ENSAYO

GRÁFICO PENETRACIÓN DE CBR

2

CBR 0.1" (%)= CBR 0.2" (%)=


5.7 7.6

ensidad Seca (gr/cc): 1.769 CBR 0.1*(%)= CBR 0.2" (%)=

4.5 Densidad Seca (gr/cc) : 1.647 CBR 0.1" (%)= 2.6 CBR 0.2" (%)= 4.6 Densidad Seca (gr/cc): 1.597

DETERMINACIÓN DEL CBR

3.4

Datos de Proctor:								
Densidad Seca 100%	1.782	gr/cm3						
Óptimo Humedad	12.10	%						
Densidad Seca 95%	1.693	gr/cm3						

C.B.R (95% M.D.S.) 0.1":	4.3
C.B.R (100% M.D.S.) 0.1": C.B.R (95% M.D.S.) 0.2": C.B.R (100% M.D.S.) 0.2":	5.9
C.B.R. (95% M.D.S.) 0.2":	6.0
C.B.R. (100% M.D.S.) 0.2":	7.9

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

INFORME DE ENSAYOS - CALICATA 03

LABORATORIO DE SUELOS Y PAVIMENTOS CJK OBRAS CIVILES - PROYECTOS Y SUPERVISION **GERENTE: CHALINGER OBREGON FLORES**

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz b 13 lt 27 A.H. San Martin.26 octubre-Piura

REGISTRO DE EXCAVACION

NORMA TECNICA: ASTM D 2488

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES AC.P. SAN PEDRO,PROVINCIA DE MORROPON, DEPARTAMIENTO DE PIURA.

TRAMO : CARRETERA BATANES A SAN PEDRO

CANTERA

MATERIAL : CALICATA 03

UBICACIÓN : KM 6+500 TEC. LABORATORIO: CHALINGER O.F.

ING. RESPONSABLE: WILWER CORDOVA. FECHA DE ENSAYO: 0502/2022

FECHA DE MUESTREO: 3001/2022

Nº DE REGISTRO: CJK002-112

DATOS DE LAMUESTRA

CALICATA : C-3 COORDENADAS MUESTRA 602851 PROF. (m) 9433482

REGISTRO DE EXCAVACION DE CALICATAS

			ESTRATO		CLAS	F.	GR	AN UL OMETI	NA		LIMTES		
PROF.	M.	GRAFICO	Espesor (CM.)	CARACTERISTICAS GEOTECNICAS	AASHTO	sucs	3" A Nro. 4	Nra. 4 8 Nra. 200	Menor Nro. 200	LL	LP.	LPL	HUM. NAT.
0.00 0.20 0.40 0.60 0.00 1.00 1.40 1.60 2.00 2.20 2.40 2.50 3.00		SM	1.8	De 0.00 a 0.50 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rodadura en la actualidad. De 0.50 a 1.5 mt se encuentra el suelo natural SMi;arena limosa con material variable de media a alta plastica, con humedad de 10.9% con cementado n de moderada a alta, que representa el 53.3% del suelo; Fino sique representa el 46.7% del suelo. El estrato es de estructura homo genea, de compacidad alta, de color marron claro.	A-7-6 (4)	SM	06	52.7	46.7	42.9	27.9	15.0	109

TECNICO LABORATORIO

OBRAS CIVILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

em all: challinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO

PROYECTO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

TRAMO : CARRETERA BATANES A SAN PEDRO

CANTERA

DESCRIPCION: CALICATA 03

CALICATA

MUESTRA

PROF. (m)

UB. MUESTRA: KM 6+500

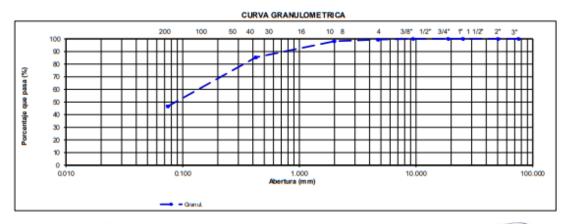
:C-3 :N° 01 FECHA DE MUESTREO: 30/01/2022

TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILMER CORDOVA

FECHA DE ENSAYO: 05/02/2022

Nº DE REGISTRO : CJK002-112

DATOS DE LA MUESTRA


TAMAÑO MAXIMO

Peso inicial seco:

329.9 Fraccion Fina 329.9

TAMIZ	AASHT 0 T-27	PESO	PORCENTAJE	RETENIDO	PORCENTAJE	ESPECIFICACION	DESCRIPCION DE LA MUESTRA		
174mic	(mm)	RETENIDO	RETENIDO	ACUMUL ADO	QUE PASA				
3"	76.200						Contenido de Humedad (%) :	10.94	
2"	50.800						Peso de la Tara (g):	0.00	
1 1/2"	38.100						Peso Tara+Suelo Hum.(g):	366.0	
1"	25.400						Peso Tara+Suelo Sec. (g):	329.9	
3/4"	19.000						Peso del Agua (g):	36.1	
1/2"	12.500						Peso del Suelo Seco (g):	329.9	
3/8"	9.500								
1/4"	6.350								
Nº 4	4.750	1.9	0.6	0.6	99.4				
Nº 8	2.360								
Nº 10	2.000	4.3	1.3	1.9	98.1		Descripción A.7	7-6(4) MALO	
Nº 16	1.190						(AASHTO):	-ola) (a)co	
N° 20	0.840	13.1	3.9	5.8	94.2		Descripción	Arena limosa	
N° 30	0.600						(SUCS):	A cha il liosa	
Nº 40	0.425	29.1	8.8	14.6	85.4		OBSERVACIONES:		
Nº 50	0.300								
Nº 80	0.177						Boloneria > 3":		0.0
Nº 100	0.150	88.2	26.6	41.2	58.8		Grava 3" - Nº 4 :		0.6
N° 200	0.075	40.1	12.1	53.3	46.7		Arena Nº4 - Nº 200 :		52.7
< Nº 200	FONDO	155.1	46.7	100.0			Finos < Nº 200:		46.7

CARACTERÍSTICA FÍSICA Y QUÍMICA DE LA MUESTRA											
Limite liquido	(%)		42.9	LIGHTON TIGION I GOIN	T EX MISES						
Limite Plastice			27.9								
Indice plástico	(%)		15.0								
Clasificación:	SUCS.	S	M								
	AASHTO	A-7-6	(4)								
Cit		Co									

Chalinger Obregon Flore. Técnico de Laboratorio de Sualos TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 35 89

RUC 20607134520

Dirección: calle Javier prado mz bi13 lt 27 A.H. San Martin 26 octubre- Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

ESTUDIO DE ESTABLIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

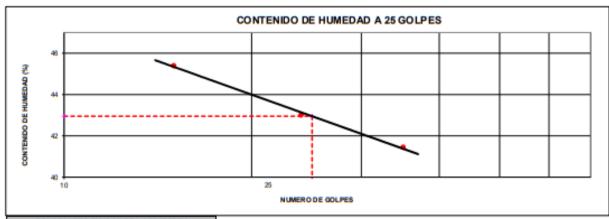
SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE FECHA DE MUESTRED: 30/01/2022 MORROPON, DEPARTAMENTO DE PIURA.

TRAM O

: CARRETERA BATANES A SAN PEDRO CANTERA

DESCRIPCION: CALICATA 03 UB. MUESTRA: KM 6+500

TEC. LABORATORIO : CHALINGER OF ING. RESPONSABLE: WILMER CORDOVA. FECHA DE ENSAYO: 07/02/2022


Nº DE REGISTRO: CJK003-112

DATOS DE LAMUESTRA

CALICATA :C-3 MUESTRA :N° 01 PROF. (m)

LIMITE LIQUIDO										
N°TARRO	7	8	9							
PESO TARRO + SUELO HUMEDO (g)	49.89	48.87	50.23							
PESO TARRO + SUELO SECO (g)	38.79	37.89	38.44							
PESO DE AGUA (g)	11.10	10.98	11.79							
PESO DEL TARRO (g)	12.01	12.36	12.47							
PESO DEL SUELO SECO (g)	26.8	25.5	26.0							
CONTENIDO DE HUMEDAD (%)	41.4	43.0	45.4							
NUMERO DE GOLPES	35	24	15							

LMITE PLASTICO										
5	6									
17.02	17.79									
14.85	15.37									
2.2	2.4									
6.98	6.79									
7.9	8.6									
27.6	28.2									
֡	14.85 2.2 6.98 7.9	5 6 17.02 17.79 14.85 15.37 2.2 2.4 6.98 6.79 7.9 8.6	5 6 17.02 17.79 14.85 15.37 2.2 2.4 6.98 6.79 7.9 8.6							

CONSTANTES FISIC AS DE LA MUESTRA						
LIMITELIQUIDO	42.9					
LIMITE PLASTICO	27.9					
INDICE DE PLASTICIDAD	15.0					

Chalinger Obragon Flore. Tecnico de Laboratorio de Suelos TECNICO DE LABORATORIO

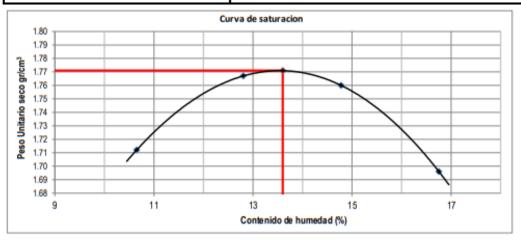
ONE LIDO CORDOVA CORDOVA Reg Column de Promission

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26 octubre-

Piura

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D


ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL OBRA SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

CALICATA 3 FECHAM. 30/01/22 N° REGISTRO CJK 4 - 112

TÉCNICO CHALINGER O. WILMER CORDOVA ING. RESP.

04/02/2022 FECHA E CHALINGER O. HECHO POR

COMPACTACIÓN										
MÉTODO DE COMPACTACIÓ :	"A"									
N° DE GOLPES POR CAPA :	25									
NUMERO DE CAPAS :	5									
NÚMERO DE ENSAYO	1	2	3							
PESO (SUELO + MOLDE) (gr)	5473.0	5565.0	5590.0	5553.0						
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0						
PESO SUELO HÚMEDO (gr)	1762	1854	1879	1842						
VOLUMEN DEL MOLDE (cm³)	930.2	930.2	930.2	930.2						
DENSIDAD HÚMEDA (gr/cm ³)	1.894	1.993	2.020	1.980						
DENSIDAD SECA (gr/cm ³)	1.712	1.767	1.760	1.696						
		CONTENIDO DE	HUMEDAD							
RECIPIENTE N°										
PESO (SUELO HÚMEDO + TARA) (gr)	400.0	400.0	400.0	400.0						
PESO (SUELO SECO + TARA) (gr)	361.5	354.6	348.5	342.6						
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0						
PESO DE AGUA (gr)	38.5	45.4	51.5	57.4						
PESO DE SUELO SECO (gr)	361.5	354.6	348.5	342.6						
CONTENIDO DE HUMEDAD (%)	10.7	12.8	14.8	16.8						
MÁXIMA DENSIDAD SECA (gr/cm³)	1.771	ОРТІМО СОМТ	ENIDO DE HU	MEDAD (%)	13.6					

Chainger Obregon Flore. Técnico de Laboratorio de Suelos Name of the state of the state

3

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

email: chalinger@hotmail.es Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROYECTO

N° REG. CJK 5 - 112 **TÉCNICO** CHALINGER O.

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

ING. RESP. WILMER CORDOVA

F. INICIO

04/02/22 08/02/22 F. FINAL

					DENSID	AD SECA						
Molde N°:				7			8			9		
N° de capa	B:		5				5			5		
N° de galpe	s por capa:			56			25			12		
Condición d	e la muestra			Sumerg	ida		Sumergida			Sumergid	a	
			Sin Sa	turar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado	
Peso molde	+ suelo hún	nedo	121	61	12341	1	1947	12193	11869)	12201	
Peso del m	olde		790	00	7900	7	888	7888	7945		7945	
Volumen de	el molde		211	4.0	2114.0	21	104.0	2104.0	2101.	1	2101.1	
% de hume	dad		13.	64	18.48		13.7	20.45	13.7		23.36	
Densidad s	eca		1.7	74	1.773	1	.696	1.699	1.643	,	1.64	
					CONTENIDO	DE HUME	DAD					
Tarro N°												
Tarro + sue	lo húmedo		449		450.0		50.0	450.0	450.0		450.0	
Tarro + sue	lo seco		395		379.8	_	95.7	373.6	395.9		364.8	
Peso del ag	jua		54	.0	70.2		54.3	76.4	54.1		85.2	
Peso de tar	ro											
Peso del su	elo seco		398	i.8	379.8	3	95.7	373.6	395.9		364.8	
% de hume	dad		13.6	3%	18.5%	13	3.7%	20.4%	13.7%		23.4%	
					EXPA	NSIÓN						
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPAN	ISIÓN	LECT.	E)	PANSIÓN	
dd/mm/aa		h	dial	mm	%	dial	mm	%	dial	mm	%	
04/02/22	15:30	0	0.0			0.0			0.0			
05/02/22	15:30	24	165.0	1.65	1.30	173.0	1.73	1.36	192.0	1.92	1.51	
06/02/22	15:30	48	203.0	2.03	1.60	219.0	2.19	1.72	246.0	2.46	1.94	
07/02/22	15:30	72	287.0	2.87	2.26	299.0	2.99	2.35	324.0	3.24	2.55	
08/02/22	15:30	96	302.0	3.02	2.38	320.0	3.20	2.52	359.0	3.59	2.83	
						BR						
PENETRA	CIÓN (x10 ¹)	Carga		MOLDE		MOLDE N° 8			MOLDE N° 9			
	,	Estándar	Lectura		rrección	Lectura	Соте		Lectura	_	arrección	
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	dal	Kg	Kg/cm2	dial	Kg	Kg/cm2	
0.635	0.025		18	18	0.9	13	13	0.6	9	9	0.4	
1.270	0.050		39	39	1.9	31	31	1.5	19	19	0.9	
1.905	0.075		73	73	3.6	58	58	2.9	36	36	1.8	
2.540	0.100	70.31	94	94	4.6	72	72	3.6	51	51	2.5	
3.810	0.150		152	152	7.5	94	94	4.6	75	75	3.7	
5.080	0.200	105.46	205	205	10.1	140	140	6.9	98	98	4.8	
6.350	0.250		280	280	13.8	198	198	9.8	136	136	6.7	
7.620	0.300		328	328	16.2	245	245	12.1	183	183	9.0	
10.160	0.400		391	391	19.3	300	300	14.8	205	205	10.1	
12.700	0.500		426	426	21.0	354	354	17.5	256	256	12.6	

Chainger Obregon Flore Técnico de Laboratorio de Suelos in their behind the control of the c

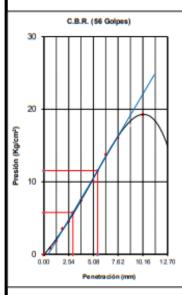
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26

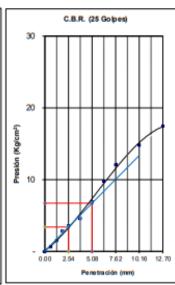
octubre-Piura

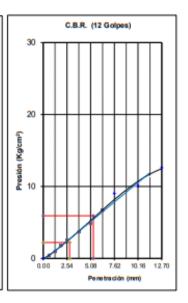
APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE Nº REG. ROYECTO

C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

DEPARTAMENTO DE PIURA

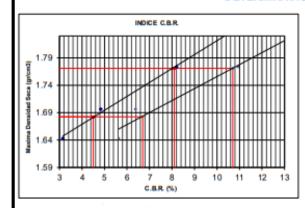

MUESTRA 3


CJK 5- 112 TÉCNICO CHALINGER O.


ING. RESP. WILMER CORDOVA

FECHA DE MUESTREO 04/02/22 FECHA DE ENSAYO

GRÁFICO PENETRACIÓN DE CBR



CBR 0:1" (%)= 8.2 CBR 0.2" (%)= 10.9 Densidad Seca (gr/cc): 1.774 CBR 0.1" (%)= 4.8 CBR 0.2" (%)= 6.4 Densidad Seca (gr/cc) : 1.696 CBR 0.1" (%)= 3.2 CBR 0.2" (%)= 5.6 Densidad Seca (gr/cc) :

DETERMINACIÓN DEL CBR

Baros de Frodon.									
Densidad Seca 100%	1.771	gr/cm3							
Óptimo Humedad	13.60	%							
Densidad Seca 95%	1.682	arlem3							

C.B.R. (95% M.D.S.) 0.1":	4.5
C.B.R. (100% M.D.S.) 0.1":	8.1
C.B.R. (95% M.D.S.) 0.2":	6.7
C.B.R. (100% M.D.S.) 0.2":	10.7

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

Datos de Proctor:

INFORME DE ENSAYOS - CALICATA 04

LABORATORIO DE SUELOS Y PAVIMENTOS CJK

OBRAS CIVILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Plura

REGISTRO DE EXCAVACION

NORWATEONICA: ASTM D 2488

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMENTO APLICANDO EL SISTEMA CONSCUD EN EL TRAMO ENTRE EL C. P. BATANES AC. P. SAN PEDRO, PROVINCIA DE MORROPON. OBRA

DEPARTAMENTO DE PIURA.

: CARRETERA BATANES A SAN PEDRO

CANTERA MATERIAL CALICATA 04

UBICACIÓN HW 12+000 FECHA DE MUESTREO: 3001/2022

TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILMER CORDOVA. FECHA DE ENSAYO: 0502/2022

Nº DE REGISTRO: CJK002-113

DATOS DE LAMUESTRA

CALICATA COORDENADAS C-4 MUESTRA PROF. (m) 9435218

REGISTRO DE EXCAVACION DE CALICATAS

		A. GRAFICO	ESTRATO		CLASIF.		GRANULOMETRIA			UMTES			
PROF.	M.		Espesor (CM)	CARACTER ISTICAS GEOTECNICAS	AASHTO	sucs	3" A Nro. 4	Nra. 4 8 Nra. 200	Monor Nra. 200	L.L	LP.	LPL	NAT.
0.00 0.20 0.40 0.00 1.00 1.20 1.40 1.00 2.00 2.20 2.40 2.60 3.00		٥	1.8	De 0.00 a 0.30 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rodadura en la actualidad. De 0.30 a 1.5 mt se encuentra el suelo natural CL;arcilla arenosa con material variable de media a alta plastica, con humedad de 9.2% con cementación de moderada a alta, que representa el 43.5% del suelo; Finos que representa el 56.5% del suelo. El estrato es de estructura homo genea, de compadidad alta, de color negro organico.	A-6 (6)	CL.	13.7	29.8	56.5	35.4	22.5	12.9	92

TECNICO LABORATORIO

OBRAS CIVILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

em all: challinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO

EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PROYECTO

PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

: CARRETERA BAT ANES A SAN PEDRO TRAMO

CANTERA

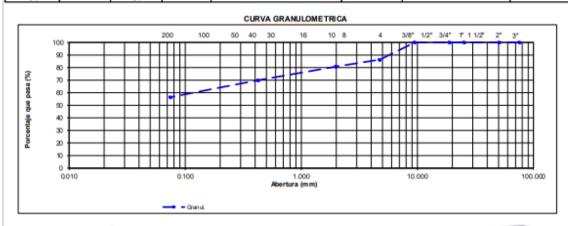
DESCRIPCION: CALICATA 04 UB. MUESTRA: KM 12+000

CALICATA

FECHA DE MUESTREO: 30/01/2022 TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILMER CORDOVA

FECHA DE ENSAYO : 05/02/2022

Nº DE REGISTRO : CJK002-113


DATOS DE LA MUESTRA

TAMAÑO MAXIMO

:N° 01 MUESTRA Peso inicial seco: 347.7 PROF. (m) Fraccion Fina 347.7

TAMIZ	AASHTO T-27	PESO	PORCENTAJE	RETENIDO	PORCENTAJE	ESPECIFICACION	DESCRIPCION DE LA MUESTRA			
IAMIL	(mm)	RETENIDO	RETENIDO	ACUMUL ADO	QUE PASA					
3"	76.200						Contenido de Humedad (%):	9.23	
2"	50.800						Peso de la Tara (g):		0.00	
11/2"	38.100						Peso Tara+Suelo Hum. (g);	379.8	
1"	25.400						Peso Tara+Suelo Sec. (g):	347.7	
3/4"	19.000						Peso del Agua (g):		32.1	
1/2"	12.500						Peso del Suelo Seco (g):		347.7	
3/8"	9.500									
1/4"	6.350									
Nº 4	4.750	47.6	13.7	13.7	86.3					
Nº 8	2.360									
Nº 10	2.000	22.0	5.5	19.2	80.8		Descripción	A-6(6)	MALO	
Nº 16	1.190						(AASHTO):	A-0(0)	MALO	
N° 20	0.840	21.7	5.4	24.5	75.5		Descripción	Aroilla aronos:	de baja plasticidad	
Nº 30	0.600						(SUCS):	Ar Cital ar Grids	i de baja pia sacidad	
N° 40	0.425	22.4	5.6	30.1	69.9		OBSERVACIONES:			
Nº 50	0.300									
Nº 80	0.177						Boloneria > 3":		0.0	
Nº 100	0.150	34.6	8.6	38.7	61.3		Grava 3" - Nº 4 :		13.7	
N° 200	0.075	19.3	4.8	43.5	56.5		Arena Nº4 - Nº 200 :		29.8	
< N° 200	FONDO	227.7	56.5	100.0			Finos < Nº 200:		56.5	

CARACTERÍSTICA FÍSICA Y QUÍMICA DE LA MUESTRA										
Limite liquido			35.4							
Limite Plastice	o (%)		22.5							
Indice plástico (%)			12.9							
Clasificación:	SUCS.	SUCS. CL.								
	AASHTO	A-6	(6)							
Cu		Co								

Challeger Obregon Flore. Técnice de Laboratorio de Suotos TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 9 92 220 059 / 9 696 782 49 / 95 498 35 89

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin 26 octubre - Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABLIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO PROVINCIA DE FECHA DE MUESTRED : 30/01/2022

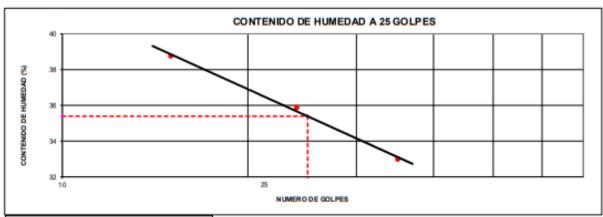
MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO

CANTERA

DESCRIPCION: CAUCATA 04 UB. MUESTRA: KM 12+000

TEC. LABORATORIO: CHALINGER OF ING. RESPONSABLE: WILMER CORDOVA.


FECHA DE ENSAYO: 07/02/2022 Nº DE REGISTRO : CJK003-113

DATOS DE LAMUESTRA

CALICATA :C-4 MUESTRA :N° 01 PROF. (m) :15

and the same of th													
LIMITE LIQUIDO													
Nº TARRO		10	11	12									
PESO TARRO + SUELO HUMEDO	(g)	62.35	55.18	52.30									
PESO TARRO + SUELO SECO	(g)	50.16	43.93	4126									
PESO DE AGUA	(g)	12.19	11.25	11.04									
PESO DEL TARRO	(g)	13.21	12.56	12.78									
PESO DEL SUELO SECO	(g)	37.0	31.4	28.5									
CONTENIDO DE HUMEDAD	(%)	33.0	35.9	38.8									
NUMERO DE GOLPES		35	24	15									

	LMITE PLASTICO												
Nº TARRO	7	8											
PESO TARRO + SUELO HUMEDO (g)	19.56	18.79											
PESO TARRO + SUELO SECO (g)	17.25	16.58											
PESO DE AGUA (g)	2.3	2.2											
PESO DEL TARRO (g)	6.98	6.79											
PESO DEL SUELO SECO (g)	10.3	9.8		_									
CONTENIDO DE DE HUMEDAD (%)	22.5	22.6											

CONSTANTES FISIC AS DE LA MU	ESTRA
LIMITE LIQUIDO	35.4
LIMITE PLASTICO	22.5
INDICE DE PLASTICIDAD	12.9

Charinger Obergon Flore Técnico de Laboratorio de Suelos TE CNICO DE LABORATORIO

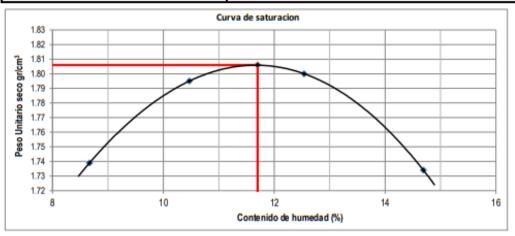
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO OBRA

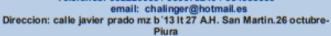
PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.


CALICATA 4 FECHAM. 30/01/22 Nº REGISTRO CJK 4 - 113

TÉCNICO CHALINGER O. ING. RESP. WILMER CORDOVA

FECHA E 04/02/2022

CHALINGER O. HECHO POR


		COMPACTA	ACIÓN		
MÉTODO DE COMPACTACIÓ :	-A-				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3		
PESO (SUELO + MOLDE) (gr)	5469.0	5555.0	5595.0	5561.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1758	1844	1884	1850	
VOLUMEN DEL MOLDE (cm³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ³)	1.890	1.982	2.025	1.989	
DENSIDAD SECA (gr/cm³)	1.739	1.795	1.800	1.734	
		CONTENIDO DE	HUMEDAD		
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	420.0	420.0	420.0	420.0	
PESO (SUELO SECO + TARA) (gr)	386.5	380.2	373.2	366.2	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	33.5	39.8	46.8	53.8	
PESO DE SUELO SECO (gr)	386.5	380.2	373.2	366.2	
CONTENDO DE HUMEDAD (%)	8.7	10.5	12.5	14.7	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.806	ОРТІМО СОМТ	ENIDO DE HU	MEDAD (%)	11.7

Chalinger Obregon Flore. Técnico de Laboratorio de Suelos we like behald control accept a discharge critical accept a Reg Cologo, de To Indian & Mann

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

ENSAYO DE CBR

MTC E132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

N° REG. CJK 5 - 113

SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

TÉCNICO CHALINGER O. WILMER CORDOVA

CALICATA ING. RESP.

F. INICIO 04/02/22

F. FINAL	08/02/22

					DENSID	AD SECA						
Molde N°:				10			11			12		
N° de capa	6:		5			5			5			
N° de golpe	es por capa:			56			25		12			
Condición d	te la muestra			Sumerg	ida		Sumergida			Sumergid	a	
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado	
Peso molde	e + suelo húm	nedo	125	08	12634	1	2156	12391	11986	j	1230:	
Peso del m	olde		82	58	8258	8	31 18	8118	8145		814	
Volumen de	elmoide		210	8.1	2108.1	2	114.1	2114.1	2111.3	3	2111.	
% de hume	dad		11.	57	14.79		11.6	18.03	11.6		20.9	
Densidad s	eca		1.8	07	1.808	1	.712	1.712	1.630		1.62	
					CONTENIDO	DE HUME	DAD					
Тапо №												
Tarro + sue	lo húmedo		430	0.0	430.0	4	30.0	430.0	430.0		430.	
Tarro + sue	lo seco		385	5.4	374.6	3	85.4	364.3	385.3		355.0	
Peso de la g	gua		44	.6	55.4	- 4	44.6	65.7	44.7		74.4	
Peso de tar	то											
Peso del su	jelo seco		385.4		374.6	385.4		364.3	385.3		355.	
% de hume	dad		11.6%		14.8%	1	1.6%	18.0%	11.6%		20.9%	
					EXPA	NSION						
FECHA	HORA	TEMPO	LECT. EXPANSIÓN		LECT. EXPANSI		ISIÓN	SIÓN LECT.		EXPANSIÓN		
dd/mm/aa		h	dial	mm	%	dal	mm	%	dial	mm	%	
04/02/22	15:30	0	0.0			0.0			0.0			
05/02/22	15:30	24	126.0	1.26	0.99	136.0	1.36	1.07	148.0	1.48	1.17	
06/02/22	15:30	48	158.0	1.58	1.24	168.0	1.68	1.32	179.0	1.79	1.41	
07/02/22	15:30	72	173.0	1.73	1.36	186.0	1.86	1.46	198.0	1.98	1.56	
08/02/22	15:30	96	201.0	2.01	1.58	214.0	2.14	1.69	223.0	2.23	1.76	
					С	BR						
	outer to each	Carga	1	MOLDE N	√° 10		MOLDE N°	11	M	OLDE N°	12	
PENE INA	CIÓN (x10 ⁻¹)	Estándar	Lectura	Co	mección	Lectura	Corre	ocián	Lectura	C	Corrección	
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	dal	Kg	Kg/am2	dial	Kg	Kg/cm2	
0.635	0.025		23	23	1.1	19	19	0.9	14	14	0.7	
1.270	0.050		56	56	2.8	48	48	2.4	40	40	2.0	
1.905	0.075		102	102	5.0	94	94	4.6	86	86	4.2	
2.540	0.100	70.31	154	154	7.6	136	136	6.7	126	126	6.2	
3.810	0.150		247	247	12.2	200	200	9.9	187	187	9.2	
5.080	0.200	105.46	326	326	16.1	279	279	13.8	249	249	12.3	
6.350	0.250		436	436	21.5	326	326	16.1	298	298	14.7	
7.620	0.300		587	587	29.0	389	389	19.2	346	346	17.1	
10.160	0.400		675	675	33.3	426	426	21.0	398	398	19.6	
			754	754	37.2	465	465	22.9	403	403	19.9	

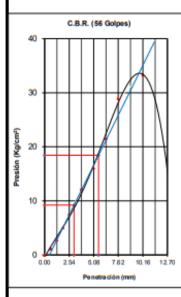
MUESTRA

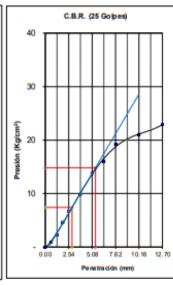
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

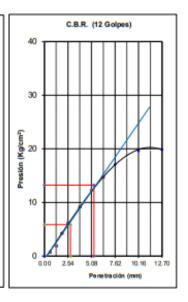
ema il: chalinger@hotmail.es Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

ROYECTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE Nº REG.

C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

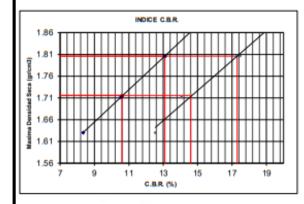

DEPARTAMENTO DE PIURA.


CJK 5- 113 TÉCNICO CHALINGER O.


ING. RESP. WILMER CORDOVA

FECHA DE MUESTREO 04/02/22 FECHA DE ENSAYO 08/02/22

GRÁFICO PENETRACIÓN DE CBR



CBR 0.1" (%)= 13.1 CBR 0.2" (%)= 17.5 Densidad Seca (gr/cc): 1.807

CBR 0.1*(%)= 10.5 CBR 0.2" (%)= 14.1 Densidad Seca (gr/cc) : 1.712 CBR 0.1" (%)= 8.3 CBR 0.2" (%)= 12.5

Densidad Seca (gr/cc): 1.630

DETERMINACIÓN DEL CBR

Datos de Proctor:		
Densidad Seca 100%	1.806	gr/cm3
Óptimo Humedad	11.70	%
Densidad Seca 95%	1.716	gr/cm3

C.B.R. (95% M.D.S.) 0.1":	10.6
C.B.R. (100% M.D.S.) 0.1":	13.1
C.B.R. (95% M.D.S.) 0.2":	14.6
C.B.R. (100% M.D.S.) 0.2":	17.3

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

INFORME DE ENSAYOS - CALICATA 05

LABORATORIO DE SUELOS Y PAVIMENTOS CJK **OBRAS CIVILES - PROYECTOS Y SUPERVISION GERENTE: CHALINGER OBREGON FLORES**

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

REGISTRO DE EXCAVACION

NORWATEONICA: ASTM D 2488

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMENTO APLICANDO EL SISTEMA CONSCUID EN EL TRAMO ENTRE EL C.P. BATANES AC.P. SAN PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

TRAMO : CARRETERA BATANES A SAN PEDRO

CANTERA

MATERIAL : CALICATA 5

UBICACIÓN RM 1+500 FECHA DE MUESTREO: 3001/2022

TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILMER CORDOVA.

FECHA DE ENSAYO: 0502/2022

Nº DE REGISTRO: C.JK002-141

DATOS DE LAMUESTRA

CALICATA : C-5 MUESTRA : N° 01 PROF. (m)

COORDENADAS

REGISTRO DE EXCAVACION DE CALICATAS

			ESTRATO		CLASI	F.	CR	ANULOMETI	MA		LIMTES		
PROF.	M.	GRAFICO	Espesor (CM)	CARACTERISTICAS GEOTECNICAS	AASHTO	sucs	N 4 4	Nra. 4 8 Nra. 200	Menor Nro. 200	F	LP.	LP	HUM. NAT.
0.00													
0.20													
0.40													
0.60				De 0.00 a 0.30 mt se encontro un suelo									
0.80		ML		contaminado con grava y materia									
1.00				organica usado como capa de rodadura en la actualidad. De 0.30									
1.20				a 1.5 mt se encuentra el suelo natural CH;									
1.40				arcilla de alta plasticidad con material									
1.60			1.5	variable de alta plastica, con humedad de 6.7% con cementacion de mo derada a	A-7-6 2(0)	CH	0.2	14.2	85.6	56.3	26.0	30.3	6.7
1.80				alta, que representa el 14.4% del suelo;									
2.00				Finos que representan el 85.6% del suelo.									
2.20				El estrato es de estructura homogenea, de compacidad alta, de color marron									
2.40				claro.									
2.60													
2.80													
3.00													

TECNICO LABORATORIO

OBRAS CIVILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmailes

Teléfonos: 992 220 059 / 9 696 782 49 / 95 498 358 9

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D-422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

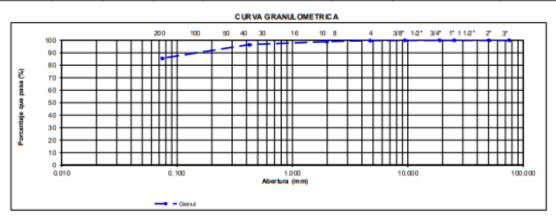
: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO

EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PROYECTO PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO

CANTERA

DESCRIPCION: CALICATA 5 UB. M UESTR /: KM 1+500


FECHADE MUESTREO: 30/01/2022 TEC. LABORATORIO: CHALNGER O.F. ING. RESPONSABLE: WILMER CORDOVA.

FECHA DE ENSAYO: 05/02 N° DE REGISTRO : CJK002-141

	DATOS DE LA MUESTRA										
CALICATA	: C-5	TAM AÑO MAXIM O									
MUESTRA	:N° 01	Peso inicial seco : 271.3									
PROF. (m)	:1.5	Fraccion Fina 271.3									

TAMIZ	AASHTOT-27	PESO	PORCENTAJE	RETENIDO	PORCENTAJE	ESPECIFICACION	DESCRIP	CION DE LA MU	ESTRA
1 ANNIZ	(mm)	RETENIDO	RETENIDO	ACUMULADO	QUE PASA				
3*	76.200						Contenido de Humedao	1 (%) :	6.75
2"	50.800						Peso de la Tara (g):		0.00
1 1/2"	38.100						Peso Tara+Suelo Hum	(g):	289.6
1"	25,400						Peso Tara+Suelo Sec.	(g):	271.3
3/4"	19.000						Posodel Agua (g):		183
1/2"	12500						Peso del Suelo Seco (g	i):	271.3
3/8"	9.500								
1/4"	6.350								
Nº 4	4.750	0.5	0.2	0.2	99.8				
Nº8	2360								
Nº 10	2000	2.3	0.8	1.0	99.0		Descripción	A-7-6(20)	MALO
Nº 16	1.190						(AASHTO):	AT 0(20)	IIIACO
Nº 20	0.840	3.8	1.4	2.4	97.6		Descripción	Arcilla de al	ta plasticidad
Nº 30	0.600						(SUCS):	A diade a	as presidentes
Nº 40	0.425	3.0	1.1	3.5	96.5		OBSERVACIONES:		
Nº 50	0.300								
Nº 80	0.177						Bdoneria > 3":		(
Nº 100	0.150	12.1	4.5	8.0	92.0		Grava 3" - Nº 4 :		0
Nº 200	0.075	17.4	6.4	14.4	85.6		Arena Nº4 - Nº 200 :		1
< Nº 200	FONDO	232.7	85.6	100.0			Finos < Nº 200 :		86

	CARACTERÍSTICA FÍSICA Y QUÍMICA DE LA MUESTRA												
Limite liquido (%)			56.3										
Limite Plastico (%	Limite Plastico (%)												
Indice plástico (%	Indice plástico (%)												
Clasificación: SUCS. Cl		Ŧ											
AASHTO A-7-6 ((20)											
Cu		Cc											

Chalinger Obregon Flore. Tionice de Laboratorio és Sueins TECNICO LABORATORIO

ma Later Departure To Constitution of the

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmailes

Teléfonos: 992 220 059 / 9 696 782 49 / 95 498 35 89

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin 26 octubre - Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

PROYECTO

: ESTUDIO DE ESTABLIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE FECHA DE MUESTRED : 30/01/2022

MORROPON, DEPARTAMENTO DE PIURA.

: CARRETERA BATANES A SAN PEDRO TRAM O

CANTERA

ING. RESPONSABLE: WILKER CORDOVA FECHA DE ENSAYO: 07/02/2022 DESCRIPCION : CALICATA 5 UB. MUESTR A: KM 1+500

Nº DE REGISTRO : CJK003-140

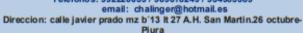
TEC. LABORATORIO: CHALINGER OF

DATOS DE LAMUESTRA CALICATA : C-5

MUESTRA : Nº 01 BOE (m)

PNOT: (III)								
LIMITE LIQUIDO								
Nº TARRO		4	5	6				
PESO TARRO + SUELO HUMEDO	(g)	59.29	58.79	60.02				
PESO TARRO + SUELO SECO	(g)	42.31	41.63	41.65				
PESO DE AGUA	(g)	16.98	17.16	1837				
PESO DEL TARRO	(g)	10.36	11.21	10.78				
PESO DEL SUELO SECO	(g)	32.0	30.4	30.9				
CONTENIDO DE HUMEDAD	(%)	53.1	56.4	59.5				
NUMERO DE GOLPES		36	25	17				

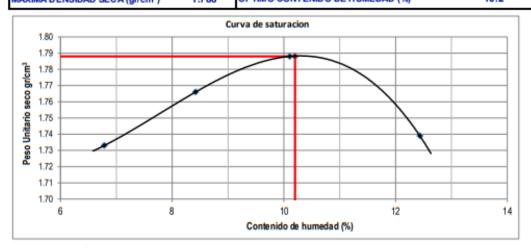
LMITE PLASTICO								
N° TARRO	1	2						
PESO TARRO + SUELO HUMEDO (g)	22.35	24.25						
PESO TARRO + SUELO SECO (g)	19.29	20.94						
PESO DE AGUA (g)	3.1	3.3						
PESO DEL TARRO (g)	7.56	8.21						
PESO DEL SUELO SECO (g)	11.7	12.7						
CONTENIDO DE DE HUMEDAD (%)	26.1	26.0						


CONSTANTES FISIC AS DE LA MUESTRA					
LIMITELIQUIDO	56.3				
LIMITE PLASTICO	26.0				
INDICE DE PLASTICIDAD	30.3				

Chattheer Obcegon Flore. Técnico de Laboratorio de Suelos TECNICO DE LABORATORIO

NO CONTROL OF THE RESIDENCE OF THE RESID ING. RESPONSABLE

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589



LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL OBRA Nº REGISTRO CJK 4 - 141 SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA. TÉCNICO CHALINGER O. CALICATA 5 ING. RESP. WILMER CORDOVA FECHAM. 30/01/22 04/02/2022 FECHA E **HECHO POR** CHALINGER O.

COMPACTACIÓN MÉTODO DE COMPACTACIÓ -A-N° DE GOLPES POR CAPA 25 NUMERO DE CAPAS 5 NÚMERO DE ENSAYO PESO (SUELO + MOLDE) (gr) 5432.0 5492.0 5542.0 PESO DE MOLDE (gr) 3711.0 3711.0 3711.0 3711.0 PESO SUELO HÚMEDO (gr) 1721 1781 1831 1819 VOLUMEN DEL MOLDE (cm3) 930.2 930.2 930.2 930.2 DENSIDAD HÚMEDA (gr/cm³) 1.915 1.968 1.955 1.850 DENSIDAD SECA (gr/cm3) 1.766 1.733 1.739 CONTENIDO DE HUMEDAD RECIPIENTE Nº PESO (SUELO HÚMEDO + TARA) (gr) 425.0 425.0 425.0 425.0 PESO (SUELO SECO + TARA) (gr) 398.0 392.0 386.0 378.0 PESO DE LA TARA (gr) 0.0 0.0 0.0 0.0 PESO DE AGUA (gr) 27.0 33.0 39.0 47.0 PESO DE SUELO SECO (gr) 398.0 392.0 386.0 378.0 CONTENIDO DE HUMEDAD (%) 6.8 8.4 10.1 12.4 MÁXIMA DENSIDAD SECA (gr/cm³) 1.788 ÓPTIMO CONTENIDO DE HUMEDAD (%) 10.2

Chalinger Obregon Flore. Técnico de Laboratorio de Suelos Luis Objecto Coloovia Coloovia Grandella Coloovia Grandella Coloovia Reg. Coloopi de T. Jindan J. 9 Marco

5

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

email: chalinger@hotmail.es
Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO

N° REG. **TÉCNICO** CJK 5 - 141

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

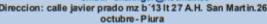
CHALINGER O. WILMER CORDOVA

ING. RESP. F. INICIO

04/02/22

F. FINAL

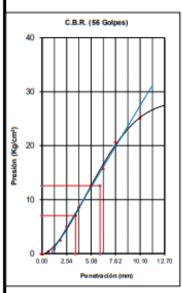
08/02/22

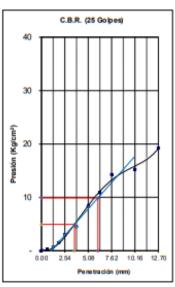

					DENSID	AD SECA							
Molde N°:			10				11			12			
N° de capa	8:		5			5			5				
	s por capa:			56			25			12			
	e la muestra	:		Sumerg	ida		Sumergida			Sumergid	a		
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu		Saturado		
Peso molde	+ suelo húm	nedo	124	10	12568	11	1902	12135	11763	3	12066		
Peso del mo	olde		82	56	8256	7	912	7912	7947		7947		
Volumen de	el molde		210	9.0	2109.0	21	114.0	2114.0	2095.	1	2095.1		
% de hume	dad		10.	24	14.36		10.2	16.52	10.2		18.95		
Densidad so	eca		1.7	87	1.788	1	.712	1.714	1.652		1.653		
					CONTENIDO	DE HUME	DAD						
Tarro N°													
Tarro + sue	lo húmedo		450	0.0	450.0	4	50.0	450.0	450.0		450.0		
Tarro + sue	lo seco		408	3.2	393.5	4	08.2	386.2	408.2		378.3		
Peso del ag	ua		41	.8	56.5	4	41.8	63.8	41.8		71.7		
Peso de tar	ro												
Peso del su	elo seco		408	3.2	393.5	4	408.2		408.2		408.2		378.3
% de hume	dad		10.2	2%	14.4%	10.2%		16.5%	10.2%		10.2%		19.0%
						NSIÓN							
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPAN	ISIÓN	LECT.	E)	PANSIÓN		
dd/mm/aa		h	dial	mm	%	dial	mm	%	dial	mm	%		
04/02/22	15:30	0	0.0			0.0			0.0				
05/02/22	15:30	24	129.0	1.29	1.02	142.0	1.42	1.12	159.0	1.59	1.25		
06/02/22	15:30	48	154.0	1.54	1.21	168.0	1.68	1.32	192.0	1.92	1.51		
07/02/22	15:30	72	171.0	1.71	1.35	179.0	1.79	1.41	245.0	2.45	1.93		
08/02/22	15:30	96	203.0	2.03	1.60	225.0	2.25	1.77	269.0	2.69	2.12		
						BR							
PENETRA	CIÓN (x10 ¹)	Carga		MOLDEN			MOLDE N°		MOLDE N°				
		Estándar	Lectura		rrección	Lectura	Corre		Lectura		arrección		
mm	pulg	Kg/cm2	dal	Kg	Kg/cm2	dial	Kg	Kg/cm2	dial	Kg	Kg/cm2		
0.635	0.025		8	8	0.4	6	6	0.3	3	3	0.1		
1.270	0.050		20	20	1.0	15	15	0.7	10	10	0.5		
1.905	0.075		51	51	2.5	32	32	1.6	19	19	0.9		
2.540	0.100	70.31	103	103	5.1	60	60	3.0	45	45	2.2		
3.810	0.150		175	175	8.6	92	92	4.5	61	61	3.0		
5.080	0.200	105.46	256	256	12.6	170	170	8.4	101	101	5.0		
6.350	0.250		320	320	15.8	220	220	10.9	182	182	9.0		
7.620	0.300		420	420	20.7	290	290	14.3	220	220	10.9		
10.160	0.400		510	510	25.2	310	310	15.3	271	271	13.4		
12.700	0.500		590	590	29.1	391	391	19.3	301	301	14.9		

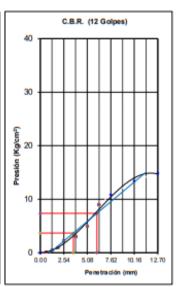
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b '13 lt 27 A.H. San Martin.26

PROYECTO

APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON


DEPARTAMENTO DE PIURA.


MUESTRA


N° REG. CJK 5- 141 TÉCNICO CHALINGER O. WILMER CORDOVA

FECHA DE MUESTREO 04/02/22 FECHA DE ENSAYO 08/02/22

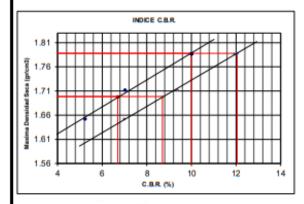
GRÁFICO PENETRACIÓN DE CBR

CBR 0.1" (%)= CBR 0.2" (%)=

Sensidad Seca (gr/cc):

10.0 11.9 1.787 CBR 0.1" (%)= CBR 0.2" (%)=

9.4 1.712 Densidad Seca (gr/cc) :


CBR 0.1" (%)= 5.2 CBR 0.2" (%)= 7.0

Densidad Seca (gr/cc) : 1.652

DETERMINACIÓN DEL CBR

7.0

Datos de Proctor:

Densidad Seca 100%	1.788	gr/cm3
Óptimo Humedad	10.20	%
Densidad Seca 95%	1.699	arlem3

C.B.R (95% M.D.S.) 0.1":	6.7
C.B.R. (100% M.D.S.) 0.1":	10.0
C.B.R. (95% M.D.S.) 0.2":	8.7
C.B.R. (100% M.D.S.) 0.2":	12.1

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

INFORME DE ENSAYOS - CALICATA 06

LABORATORIO DE SUELOS Y PAVIMENTOS CJK OBRAS CIVILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz b*13 lt 27 A.H. San Martin.26 octubre-Plura

REGISTRO DE EXCAVACION

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMENTO APLICANDO EL SISTEMA CONSCUD EN EL TRAMO ENTRE EL C.P. BATANES AC.P. SAN PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PURA.

TRAMO : CARRETERA BATANES A SAN PEDRO

CANTERA

MATERIAL : CALICATA 06

UBICACIÓN IGM 2+500 FECHA DE MUESTREO : 3001/2022

TEC. LABORATORIO: CHALINGER OF ING. RESPONSABLE: WILMER CORDOVA.

FECHA DE ENSAYO: 0502/2022 Nº DE REGISTRO: CJK001-136

DATOS DE LAMUESTRA

CALICATA : C-6 : N° 01 MUESTRA PROF. (m) : 1.5

COORDENADAS

REGISTRO DE EXCAVACION DE CALICATAS

			ESTRATO		CLASI	E.	CR	ANULOWET	NA.		LIMTES		
PROF.	M.	GRAFICO	Espesor (CM)	CARACTERISTICAS GEOTECNICAS	AASHTO	sucs	3" A Nro. 4	Nra. 4 8 Nra. 200	Menor Nro. 200	L.L	LP.	LP.	HUM. NAT.
0.00 0.20 0.40 0.60 0.00 1.00 1.20 1.40 2.00 2.20 2.40 2.50 3.00		ø	1.8	De 0.00 a 0.30 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rodadura en la actualidad. De 0.30 a 1.5 mt se encuentra el suelo natural CHarcilla de alta plasticidad con aena con material variable de media a alta plastica, con humedad de 8.8 % con cementacion de moderad a a alta, que representa el 15.3% del suelo; Finos que representan el 84.7 % del suelo. El estrato es de estructura homogenea, de compacidad alta, de color marron claro.	A-7-6 2(0)	₹	8	15.3	84.7	60.1	24.1	36.0	8.8

TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmailes

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 358 9

RUC 20807134520

Dirección: calle Javier prado mz bi13 lt27 A.H. San Martin.26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO

EL SISTEMA CONSOLID EN EL TRAM O ENTRE EL C.P. BATANES A C.P. SAN PROYECTO

PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

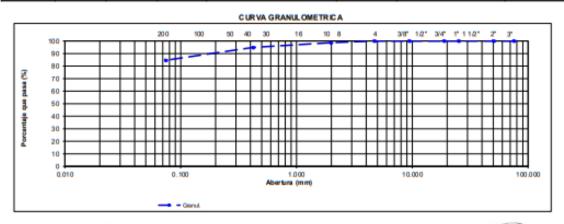
: CARRETERA BATANES A SAN PEDRO TRAM O

CANTERA

DESCRIPCION: CALIC AT A 06 UB. M UESTR #: KM 2+500

FECHADE MUESTREO: 30/01/2022 TEC. LABORATORIO: CHALINGER O.F. ING.RESPONSABLE: WILMER CORDOVA.

FECHA DE ENSAYO: 05/02/2022


N° DE REGISTRO : CJK002-136

DATOS DE LAMUESTRA

CALICATA :C-6 TAM AÑO MAXIM O MUESTRA Nº 01 Peso inicial seco: 274.2 PROF. (m) :15 Fraccion Fina 274.2

1001. 010	. 12						OHITCH ETTE		
TAMZ	AASHTO T-27	PESO	PORCENTAJE	RETENIDO	PORCENTAJE	ESPECIFICACION	DESCRIP	CION DE LA MU	ESTRA
174HZ	(mm)	RETENIDO	RETENIDO	ACUMULADO	QUE PASA				
3"	76.200						Contenido de Humedad	(%):	8.79
2"	50.800						Peso de la Tara (g):		0.00
1 1/2"	38.100						Peso Tara+Suelo Hum.	(g):	298.3
1"	25,400						Peso Tara+Suelo Sec.(9):	274.2
3/4"	19.000						Pesodel Agua (g):		24.1
1/2"	12500						Peso del Suelo Seco (gi):	274.2
3/8"	9.500								
1/4"	6.350								
Nº4	4.750	0.0	0.0	0.0	100.0				
Nº8	2360								
Nº 10	2000	3.8	1.4	1.4	98.6		Descripción	A-7-6(20)	MALO
№ 16	1.190						(AASHTO):	A-1 -0(20)	MACO
Nº 20	0.840	6.4	2.3	3.7	96.3		Descripción	Arcilla de alta pla	sticidad con arena
Nº 30	0.600						(SUCS):	A diade atapia	BOCIGEO CON A GIA
№ 40	0.425	3.9	1.4	5.1	94.9		OBSERVACIONES:		
Nº 50	0.300								
Nº 80	0.177						Bdoneria > 3":		0
№ 100	0.150	11.4	4.2	9.3	90.7		Grava 3" - Nº 4 :		0
Nº 200	0.075	16.5	6.0	15.3	84.7		Arena Nº4 - Nº 200 :		15
< Nº 200	FONDO	232.2	84.7	100.0			Finos < Nº 200 :		84.

		CARACT	TERISTICA FÍSIC	A Y QUÍMICA	DE LA MUEST	RA	
Limite liquido (%)		60.1					
Limite Plastico (%)		24.1					
Índice plástico (%)		36.0					
Clasificación: SUCS.	C	Н					
AASHTO	A-7-6	(20)					
Cu	Cc						

Chalinger Obregon Flore. Técnico de Laboratorio de Suelos TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 35 89

RUC 20607134520

Dirección: calle Javier prado mz bi13 lt 27 A.H. San Martin 26 octubre - Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABLIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL

SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO PROVINCIA DE FECHA DE MUESTREO : 30/01/2022

MORROPON, DEPARTAMENTO DE PIURA.

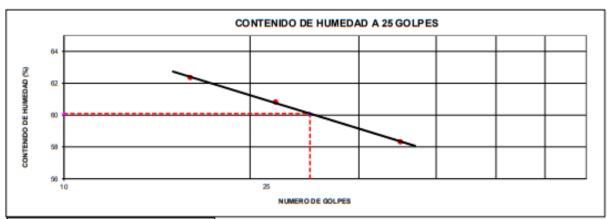
TRAMO : CARRETERA BATANES A SAN PEDRO

CANTERA DESCRIPCION : CAUCATA 06

UB. MUESTR A: KM 2+500

TEC. LABORATORIO : CHALINGER OF ING. RESPONSABLE : WILMER CORDOVA.

FECHA DE ENSAYO : 07/02/2022 N° DE REGISTRO : CJK03-136

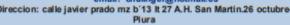

DATOS DE LA MUESTRA

CALICATA : C-6 MUESTRA : N° 01 PROF. (m) : 1.5

PROYECTO

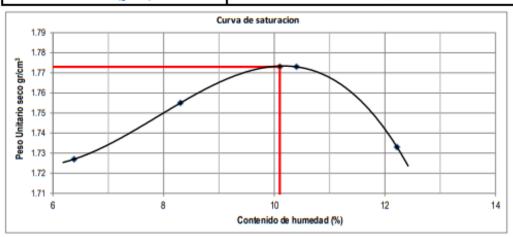
LIMITE LIQUIDO								
N° TARRO	104	105	108					
PESO TARRO + SUELO HUMEDO (g)	46.26	47.17	48.59					
PESO TARRO + SUELO SECO (g)	33.12	33.71	34.54					
PESO DE AGUA (g)	13.14	13.46	14.05					
PESO DEL TARRO (g)	10.59	11.58	12.01					
PESO DEL SUELO SECO (g)	22.5	22.1	22.5					
CONTENIDO DE HUMEDAD (%)	58.3	60.8	624					
NUMERO DE GOLPES	35	22	16					

LMITE PLASTICO								
N° TARRO		12	13					
PESO TARRO + SUELO HUMEDO	(g)	16.23	20.17					
PESO TARRO + SUELO SECO	(g)	14.98	18.23					
PESO DE AGUA	(g)	1.3	1.9					
PESO DEL TARRO	(g)	9.89	10.01					
PESO DEL SUELO SECO	(g)	5.1	8.2					
CONTENIDO DE DE HUMEDAD	(%)	24.6	23.6					


CONSTANTES FISIC AS DE LA MUESTRA						
LIMITELIQUIDO	60.1					
LIMITE PLASTICO	24.1					
INDICE DE PLASTICIDAD	36.0					

Chairinger Obragon Flore.
Técnico de Laboratorio de Suelos
TECNICO DE LABORATORIO

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b'13 it 27 A.H. San Martin.26 octubre-

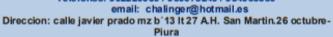


LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL OBRA Nº REGISTRO CJK 4 - 136 SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA. CHALINGER O. TÉCNICO CALICATA 6 ING. RESP. WILMER CORDOVA FECHAM. 31/01/22 FECHA E 10/02/2022 CHALINGER O. HECHO POR

_		COMPACTA	ACIÓN .		
MÉTODO DE COMPACTACIÓ :	"A"				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5420.0	5479.0	5532.0	5520.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1709	1768	1821	1809	
VOLUMEN DEL MOLDE (cm³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ⁵)	1.837	1.901	1.958	1.945	
DENSIDAD SECA (gr/cm ³)	1.727	1.755	1.773	1.733	
		CONTENIDO DE	HUMEDAD		•
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	450.0	450.0	450.0	450.0	
PESO (SUELO SECO + TARA) (gr)	423.0	415.5	407.6	401.0	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	27.0	34.5	42.4	49.0	
PESO DE SUELO SECO (gr)	423.0	415.5	407.6	401.0	
CONTENIDO DE HUMEDAD (%)	6.4	8.3	10.4	12.2	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.773	ОРТІМО CONT	ENIDO DE HU	MEDAD (%)	10.1



Chalinger Owegon Flore. Técnico de Laboratorio de Suelos we list object to coleron a coleron a Reg Coleron to Tomas a super

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

ENSAYO DE CBR

MTC E 132 ASTM D- 1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO

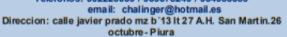
PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

CJK 5 - 136 N° REG. **TÉCNICO**

CHALINGER O. ING. RESP. WILMER CORDOVA

F. INICIO 10/02/22

F. FINAL 14/02/22

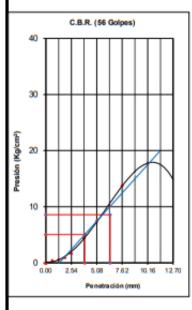

									F. FINAL			
					DENSID	AD SECA						
Molde N°:				4			5			6		
N° de capa	8:			5			5	5				
N° de galpe	s por capa:			56			25			12		
Condición d	condición de la muestra:			Sumerg	ida		Sumergida	1		Sumergid	a	
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado	
Peso molde + suelo húmedo		nedo	119		12133	11	1834	12032	11900)	1219	
Peso del m	olde		78	88	7888	7	945	7945	8118		81	
Volumen de	el molde		210	4.0	2104.0	21	101.1	2101.1	2114.1	1	2114	
% de hume	dad		9.9	37	13.87	•	10.0	15.62	10.0		18.0	
Densidad s	eca		1.7		1.772		.683	1.682	1.626		1.6	
					CONTENIDO	DE HUME	DAD					
Tarro N°												
Tarro + sue			450		450.0		50.0	450.0	450.0		450	
Tarro + sue			409		395.2		09.2	389.2	409.1		379	
Peso del aç			40	.8	54.8	4	40.8	8.09	40.9		70	
Peso de tar												
Peso del su			409		395.2	409.2		389.2	409.1		379 18.7	
% de hume	de humedad		10.0	1%	13.9%	10	0.0%	15.6%	10.0%	10.0%		
				-		NSIÓN	-			-		
FECHA	HORA	TIEMPO	LECT.	_	PANSIÓN	LECT.	EXPAN				PANSIÓN	
dd/mm/aa	45.00	h	dial	mm	%	dial	mm	%	dial	mm	%	
10/02/22	15:30	0	0.0	4.00	4.00	0.0	4.40	4.40	0.0	4.50	4.05	
11/02/22	15:30	24	129.0	1.29	1.02	142.0	1.42	1.12	159.0	1.59	1.25	
12/02/22	15:30	48	154.0	1.54	1.21	168.0	1.68	1.32	192.0	1.92	1.51	
13/02/22	15:30	72	171.0	1.71	1.35	179.0	1.79	1.41	245.0	2.45	1.93	
14/02/22	15:30	96	203.0	2.03	1.60	225.0 BR	2.25	1.77	269.0	2.69	2.12	
		Carga		MOLDE		UK.	MOLDE N°	5	N/	OLDE N	6	
PENETRA	CIÓN (x101)	Estándar	Lectura		rrección	Lectura	Corre	_	Lectura		arrección	
mm	pulg	Kg/cm2	dal	Kg	Kg/cm2	da	Kg	Kg/cm2	dal	Kg	Kg/cm2	
0.635	0.025	19012	9	9	0.4	7	7	0.3	3	3	0.1	
1.270	0.050		13	13	0.6	10	10	0.5	6	6	0.3	
1.905	0.075		20	20	1.0	16	16	0.8	10	10	0.5	
2.540	0.100	70.31	36	36	1.8	30	30	1.5	19	19	0.9	
3.810	0.150	10.01	91	91	4.5	70	70	3.5	51	51	2.5	
5.080	0.200	105.46	152	152	7.5	132	132	6.5	108	108	5.3	
6.350	0.250		208	208	10.3	188	188	9.3	141	141	7.0	
7.620	0.300		280	280	13.8	250	250	12.3	224	224	11.1	
10.160	0.400		360	360	17.8	310	310	15.3	283	283	14.0	
12.700	0.500		470	470	23.2	400	400	19.7	320	320	15.8	

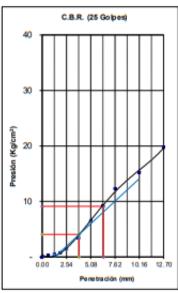
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

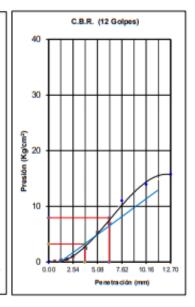
ROYECTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE

C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

DEPARTAMENTO DE PILIRA

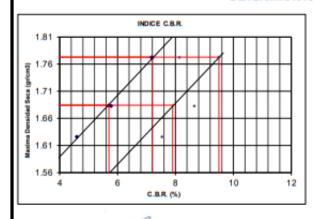

MUESTRA


N° REG. CJK 5- 136 CHALINGER O.


ING. RESP. WILMER CORDOVA

FECHA DE MUESTREO 10/02/22 FECHA DE ENSAYO 14/02/22

GRÁFICO PENETRACIÓN DE CBR



CBR 0.1" (%)= 7.2 CBR 0.2" (%)= 8.1 Densidad Seca (gr/cc): 1.772 CBR 0.1" (%)= 5.8 CBR 0.2" (%)= 8.6 Densidad Seca (gr/cc) : 1.683 CBR 0.1" (%)= 4.6 CBR 0.2" (%)= 7.5 Densidad Seca (gr/cc): 1.626

DETERMINACIÓN DEL CBR

Datos de Proctor:									
Densidad Seca 100%	1.773	gr/cm3							
Óptimo Humedad	10.10	%							
Densidad Seca 95%	1.684	gr/cm3							

C.B.R. (95% M.D.S.) 0.1":	5.7
C.B.R. (100% M.D.S.) 0.1":	7.2
C.B.R. (95% M.D.S.) 0.2":	7.9
C.B.R. (100% M.D.S.) 0.2":	9.5

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

INFORME DE ENSAYOS - CALICATA 07

LABORATORIO DE SUELOS Y PAVIMENTOS CJK **OBRAS CIVILES - PROYECTOS Y SUPERVISION**

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992220059/969678249/954983589

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

REGISTRO DE EXCAVACION

NORWA TECNICA: ASTM D 2488

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES YC.P. SAN PEDRO, PROVINCIA DE MORROPON.

OBRA DEPARTAMENTO DE PIURA.

TRAMO CARRETERA BATANES A SAN PEDRO CANTERA

MATERIAL : CALICATA 07

UBICACIÓN RM 4+500 FECHA DE MUESTREO: 3001/2022

TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILWER CORDOVA.

FECHA DE ENSAYO: 0502/2022

Nº DE REGISTRO: CJK001-114

DATOS DE LA MUESTRA

REGISTRO DE EXCAVACION DE CALICATAS

CALICATA

MUESTRA : Nº 01 PROF. (m)

COORDENADAS

			ESTRATO		CLASI	E.	CR	AN ULONETI	MA.		UMTES		
PROF.	M.	GRAFICO	Espesor (CM.)	CARACTERISTICAS GEOTECNICAS	AASHTO	sucs	5 A 0.4	Nra. 4 8 Nra. 200	Menor Nro. 200	F	LP.	LPL	HUM. NAT.
0.00 0.20 0.40 0.60 0.00 1.00 1.40 1.60		α	(CML)	De 0.00 a 0.40 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rodad ura en la actualidad. De 0.40 a 1.5 mt se encuentra el suelo natural CH;arcilla de alta plasticidad con material variable de media a alta plastica, con h umedad de 9.5% con cementadon de moderada a alta, que representa el 12.9%, del suelo; Finos que representa el 87.1%	A-7-6 2(0)		Nrg. 4	Nra. 200	Nrs. 200	51.4	22.4	29.0	96
2.00 2.20 2.40 2.60 2.80 3.00				del suelo. El estrato es de estructura homogenea, de compacidad alta, de color marron claro.									

TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: challinger@hotmail.es

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 358 9

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin. 26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTMD 422 Y AASHTO T-88

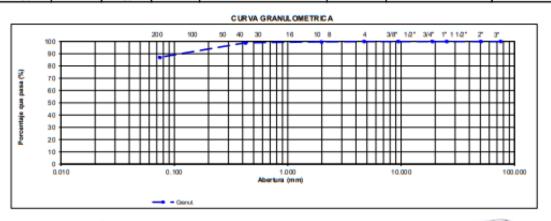
LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO PROYECTO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES Y C.P. SAN

EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES Y C.P. SAN PEDRO,PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO

CANTERA


DESCRIPCION: CALIC AT A 07 UB. M UESTR #: KM 4+500 FECHADE MUESTREO: 30/01/2022 TEC.LABORATORIO: CHALNGER O.F. ING. RESPONSABLE: WILMER CORDOVA.

FECHA DE ENSAYO : 05/02/2022 N° DE REGISTRO : CJR002-114

	DATOS DE LA MUESTRA								
CALICATA	: C-7	O MIXAM OÑA MAT							
MUESTRA	: N° 01	Peso inicial seco :	347.7						
PROF. (m)	:15	Fraccion Fina	356.2						
	:N° 01 :1.5								

PROF. (m)	:1.0			Fraccion Fina 356.2						
TAMIZ	AASHTO T-27	PESO	PORCENTAJE	RETENIDO	PORCENTAJE	ESPECIFICACION	DESCRIPC	ON DE LA MU	JESTRA	
174MZ	(mm)	RETENIDO	RETENIDO	ACUMULADO	QUE PASA					
3*	76.200						Contenido de Humedad (%):	9.63	
2*	50.800						Peso de la Tara (g):		0.00	
1 1/2"	38.100						Peso Tara+Suelo Hum.(g	():	390.5	
1"	25,400						Peso Tara+Suelo Sec./gi	i.	356.2	
3/4"	19.000						Peso del Agua (g):		34.3	
1/2"	12,500						Peso del Suelo Seco (g):		356.2	
3/8"	9.500									
1/4"	6.350									
Nº 4	4.750	0.0	0.0	0.0	100.0					
Nº8	2360									
Nº 10	2000	1.0	0.3	0.3	99.7		Descripción	A-7-6(20)	MALO	
№ 16	1.190						(AASHTO):	A-7-0(20)	MACO	
Nº 20	0.840	1.0	0.3	0.6	99.4		Descripción	Arcilla da a	Ita plasticidad	
Nº 30	0.600						(SUCS):	Ardiadea	rea prasocresio	
Nº 40	0.425	2.0	0.6	1.1	98.9		OBSERVACIONES:			
Nº 50	0.300									
Nº 80	0.177						Bdoneria > 3" :			0.0
Nº 100	0.150	30.4	8.5	9.7	90.3		Grava 3" - Nº 4 :			0.0
N° 200	0.075	11.5	3.2	129	87.1		Arena Nº4 - Nº 200 :			12.9
< Nº 200	FONDO	310.3	87.1	100.0			Finos < Nº 200 :			87.1

CARACTERÍSTICA FÍSICA Y QUÍMICA DE LA MUESTRA									
Limite liquido (%)		51.4							
Limite Plastico (%)		22.4							
Indice plástico (%)		29.0							
Clasificación: SUCS.	C	H							
AASHTO A-7-6		(20)							
Cu	Cc								

Challinger Obregon Flore. Técnico de Laboratorio de Sueles TECNICO LABORATORIO Maria de la compania del compania de la compania del compania de la compania del la compania de la compania de la compania del la compania de la compania del la compania del

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 059 / 9 696 782 49 / 95 498 35 89

RUC 20607134520

Dirección: calle Javier prado mz bi13 lt27 A.H. San Martin.26 octubre- Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D-4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABLIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE FECHA DE MUESTRED : 30/01/2022

MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO

CANTERA DESCRIPCION: CALICATA 07 UB. MUESTRA: KM 4+500

TEC. LABORATORIO: CHALINGER OF ING. RESPONSABLE: WILMER CORDOVA. FECHA DE ENSAYO: 07/02/2022 Nº DE REGISTRO : CJK03-114

DATOS DE LAMUESTRA

MUESTRA :N° 01 PROF. (m) 1.5

PROYECTO

LIMITE LIQUIDO									
N° TARRO	13	14	15						
PESO TARRO + SUELO HUMEDO (g)	66.22	59.80	56.90						
PESO TARRO + SUELO SECO (g)	48.78	43.56	41.06						
PESO DE AGUA (g)	17.44	16.24	1584						
PESO DEL TARRO (g)	12.36	12.59	12.78						
PESO DEL SUELO SECO (g)	36.4	31.0	283						
CONTENIDO DE HUMEDAD (%)	47.9	52.4	56.0						
NUMERO DE GOLPES	35	23	16						

LMITE PLASTICO									
Nº TARRO	9	10							
PESO TARRO + SUELO HUMEDO (g)	20.35	19.87							
PESO TARRO + SUELO SECO (g)	17.89	17.49							
PESO DE AGUA (g)	2.5	2.4							
PESO DEL TARRO (g)	6.98	6.79							
PESO DEL SUELO SECO (g)	10.9	10.7							
CONTENIDO DE DE HUMEDAD (%)	22.5	22.2							


CONSTANTES FISIC AS DE LA MUE	STRA
LIMITELIQUIDO	51.4
LIMITE PLASTICO	22.4
INDICE DE PLASTICIDAD	29.0

Chalinger Obergon Flore. Técnico de Laboratorio de Suelos TECNICO DE LABORATORIO

A ON ALIBO CORDOVA CORDOVA ING. RESPONSABLE

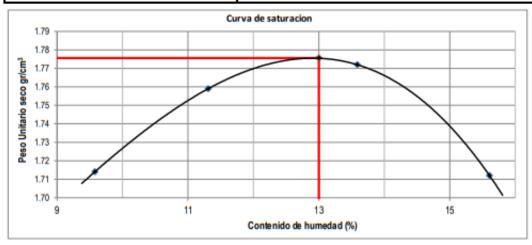
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26 octubre-

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

OBRA ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.


CALICATA

FECHAM. 30/01/22 Nº REGISTRO CJK 4 - 114

TÉCNICO CHALINGER O. ING. RESP. WILMER CORDOVA

FECHA E 04/02/2022 HECHO POR CHALINGER O.

		COMPACT	ACIÓN		
MÉTODO DE COMPACTACIÓ :	-A-				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5458.0	5532.0	5583.0	5552.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1747	1821	1872	1841	
VOLUMEN DEL MOLDE (cm³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ⁵)	1.878	1.958	2.012	1.979	
DENSIDAD SECA (gr/cm³)	1.714	1.759	1.772	1.712	
		CONTENIDO DE	HUMEDAD		
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	500.0	500.0	500.0	500.0	
PESO (SUELO SECO + TARA) (gr)	456.3	449.2	440.2	432.5	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	43.7	50.8	59.8	67.5	
PESO DE SUELO SECO (gr)	456.3	449.2	440.2	432.5	
CONTENDO DE HUMEDAD (%)	9.6	11.3	13.6	15.6	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.776	ОРТІМО СОМ Т	TENIDO DE HU	MEDAD (%)	13.0

Challeger Obregon Flore. Técnice de Laboratorio de Suelos wil ver objected to compose a composite description of the composite of th

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26 octubre-

Piura

CJK 5 - 114

CHALINGER O.

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

ING. RESP. WILMER CORDOVA CALICATA

N° REG.

TÉCNICO

F. INICIO 04/02/22 F. FINAL 08/02/22

					DENSID	AD SECA					
Molde N°:				13			14		15		
N° de capa	S:			5			5		5		
N° de galpe	s por capa:			56			25		12		
Condición d	Condición de la muestra: Sumergida				da		Sumergida		Sumergida		
			Sin Sa	iturar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado
Peso molde	+ suelo húm	nedo	123	75	12459	1	1987	12140	11865	5	12185
Peso del m	olde		814	45	8145	7	888	7888	7945		7945
Volumen de	el molde		211	1.3	2111.3	21	104.0	2104.0	2101.	1	2101.1
% de hume	dad		12.	95	15.33		13.0	17.13	13.0		21.92
Densidad s	eca		1.7		1.772		.724	1.725	1.651		1.655
					CONTENIDO	DE HUME	DAD				
Tarro N°											
Tarro + sue	lo húmedo		450		450.0	_	50.0	450.0	450.0		450.0
Tarro + sue	10 0000		398		390.2	-	98.3	384.2	398.3	,	369.1
Peso del aç	jua		51.	.6	59.8	t	51.7	65.8	51.7		80.9
Peso de tar	ro										
Peso del su	elo seco		398	3.4	390.2	398.3		384.2	398.3		369.1
% de hume	dad		13.0	0% 15.3%		13.0%		17.1%	13.0%		21.9%
						INSIÓN					
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT. EXPAN			LECT.	E)	(PANSIÓN
dd/mm/aa		h	dial	mm	%	dial	mm	%	dial	mm	%
04/02/22	15:30	0	0.0			0.0			0.0		
05/02/22	15:30	24	142.0	1.42	1.12	152.0	1.52	1.20	163.0	1.63	1.28
06/02/22	15:30	48	169.0	1.69	1.33	179.0	1.79	1.41	186.0	1.86	1.46
07/02/22	15:30	72	183.0	1.83	1.44	195.0	1.95	1.54	210.0	2.10	1.65
08/02/22	15:30	96	212.0	2.12	1.67	221.0	2.21	1.74	256.0	2.56	2.02
						BR					
PENETRA	CIÓN (x10 ¹)	Carga		NOLDE N		MOLDE N° 14			MOLDE N° 15		
	, , , ,	Estándar	Lectura		rrección	Lectura		cción	Lectura	-	arrección
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	dial	Kg	Kg/cm2	dial	Kg	Kg/cm2
0.635	0.025		10	10	0.5	7	7	0.3	5	5	0.2
1.270	0.050		14	14	0.7	10	10	0.5	8	8	0.4
1.905	0.075		21	21	1.0	16	16	8.0	10	10	0.5
2.540	0.100	70.31	37	37	1.8	27	27	1.3	14	14	0.7
3.810	0.150		90	90	4.4	71	71	3.5	50	50	2.5
5.080	0.200	105.46	153	153	7.5	120	120	5.9	112	112	5.5
6.350	0.250		210	210	10.4	180	180	8.9	140	140	6.9
7.620	0.300		290	290	14.3	241	241	11.9	205	205	10.1
10.160	0.400		362	362	17.9	338	338	16.7	300	300	14.8
12.700	0.500		460	460	22.7	410	410	20.2	370	370	18.3

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos the interbollation common a common and the common a

MUESTRA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

email: chalinger@hotmail.es
Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26 octubre - Piura

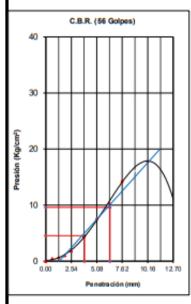
CJK 5- 114

CHALINGER O.

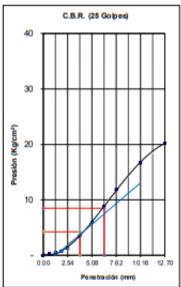
WILMER CORDOVA

ROYECTO

APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE Nº REG. C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON


DEPARTAMENTO DE PILIRA.

ING. RESP.


FECHA DE MUESTREO 04/02/22 FECHA DE ENSAYO 08/02/22

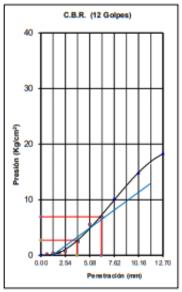
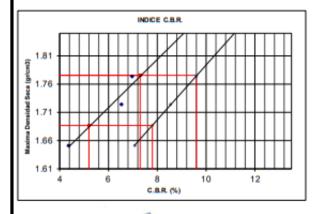

TÉCNICO

GRÁFICO PENETRACIÓN DE CBR


7

CBR 0.1" (%)= 6.5 CBR 02" (%)= 9.1 Densidad Seca (gr/cc): 1.774 CBR 0.1" (%)= 6.0 CBR 0.2" (%)= 8.0 Densidad Seca (gr/cc) : 1.724 CBR 0.1" (%)= 3.9 CBR 0.2" (%)= 6.6 Densidad Seca (gr/cc) : 1.651

DETERMINACIÓN DEL CBR

Datos de Proctor:								
Densidad Seca 100%	1.776	gr/cm3						
Óptimo Humedad	13.00	%						
Densidad Seca 95%	1.687	gr/cm3						

C.B.R (95% M.D.S.) 0.1":	4.7
C.B.R. (100% M.D.S.) 0.1":	6.8
C.B.R. (95% M.D.S.) 0.2":	7.3
C.B.R. (100% M.D.S.) 0.2":	9.1

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

INFORME DE ENSAYOS - CALICATA 08

LABORATORIO DE SUELOS Y PAVIMENTOS CJK

OBRAS CIVILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Plura

REGISTRO DE EXCAVACION

NORWATEONICA: ASTM D 2488

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES AC.P. SAN PEDRO, PROVINCIA DE MORROPON. OBRA

DEPARTAMENTO DE PIURA.

TRAMO CARRETERA BATANES A SAN PEDRO

CANTERA MATERIAL ::CALICATA08

UBICACIÓN KM 5+500 FECHA DE MUESTREO: 31/01/2022

TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILMER CORDOVA. FECHA DE ENSAYO: 0602/2022

Nº DE REGISTRO: CJK00 1-135

DATOS DE LAMUESTRA

CALICATA : C-8 MUESTRA : Nº 01 COORDENADAS

REGISTRO DE EXCAVACION DE CALICATAS

			ESTRATO		CLASI	r.	GR	UNULONET	MA				
PROF.	M.	GRAFICO	Espesor (CM.)	CARACTERISTICAS GEOTECNICAS	AASHTO	sucs	3" A Nro. 4	Nra. 4 8 Nra. 200	Menor Nro. 200	L.L	LP.	LP.	HUM. NAT.
0.00 0.20 0.40 0.60 1.00 1.20 1.40 1.60 2.00 2.20 2.40 2.50 3.00		ø	1.8	De 0.00 a 0.30 mt se encontro un suelo contaminado con gravay materia organica usado como capa de rodadura en la actualdad. De 0.30 a 1.5 mt se encuentra el suelo natural Cit;arcilla de alta plasticidad con arena con material variab le de media a alta plastica, con humedad de 8.0 % con cementacion de mo derad a alta, que representan el 18.8% del suelo; Fin os que representan el 81.2% del suelo. El estrato es de estructura homogenea, de compacidad alta, de color marron claro.	A-7-6 2(0)	č	9	17.9	81.2	50.5	22.7	27.8	80

Chalinger Obiegon Flore. Tiurice de Laboratorio de Suelas

TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 099 / 9 696 782 49 / 95 498 358 9

RUC 20607134520

Dirección: calle Javier prado mz bi13 lt27 A.H. San Martin.26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

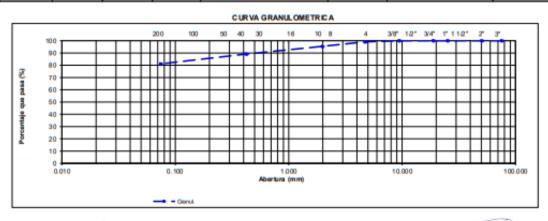
NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D-422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO PROYECTO

EL SISTEMA CONSOLID EN EL TRAM O ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO


CANTERA DESCRIPCION: CALIC AT A 08 UB. M UESTR /: CALIC AT A 08 FECHADE MUESTREO: 31/01/2022 TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILMER CORDOVA. FECHA DE ENSAYO: 06/02/2022 Nº DE REGISTRO: CJR0002-135

DATOS DE LA MUESTRA

CALICATA :: C-8 TAM AÑO MAXIMO MUESTRA :N° 01 Peso inicial seco: 325.1 Fraccion Fina 325.1 PROF. (m) 1.5

TAMIZ	AASHTOT-27	PESO	PORCENTAJE	RETENIDO	PORCENTAJE	ESPECIFICACION	DESCRIP	CION DE LA MU	ESTRA
174WLZ	(mm)	RETENIDO	RETENIDO	ACUMULADO	QUE PASA				
3*	76.200						Contenido de Humedad	1 (%) :	8.03
2"	50.800						Peso de la Tara (g):		0.00
1 1/2"	38.100						Peso Tara+Suelo Hum	(9):	351.2
1"	25,400						Peso Tara+Suelo Sec.(g):	325.1
3/4"	19.000						Peso del Agua (g):		26.1
1/2"	12500						Peso del Suelo Seco (g):	325.1
3/8"	9.500								
1/4"	6.350								
Nº 4	4.750	3.0	0.9	0.9	99.1				
Nº8	2360								
Nº 10	2000	12.0	3.7	4.6	95.4		Descripción	A-7-6(20)	MALO
Nº 16	1.190						(AASHTO):	A-1-0(20)	MACO
Nº 20	0.840	11.0	3.4	7.9	92.1		Descripción	Arcilla de ella pla	sticidad con arena
Nº 30	0.600						(SUCS):	A diade atapa	BOCIGEO CON A GIA
№ 40	0.425	9.5	2.9	10.8	89.2		OBSERVACIONES:		
Nº 50	0.300								
Nº 80	0.177						Bdoneria > 3" :		0.0
№ 100	0.150	13.6	4.1	15.0	85.0		Grava 3" - Nº 4 :		0.5
Nº 200	0.075	12.7	3.9	18.8	81.2		Arena Nº4 - Nº 200 :		17.5
< Nº 200	FONDO	266.3	81.2	100.0			Finos < Nº 200 :		81.2

	CARACT	TERÍSTICA FÍSICA Y QUÍMICA I	DE LA MUEST	RA	
Limite líquido (%)	50.5				
Limite Plastico (%)	22.7				
Índice plástico (%)	27.8				
Clasificación: SUCS.	CH				
AASHTO A-	7-6 (20)				
Cu Cc	$\overline{}$				

Chalinger Obregon Flore. Técnice de Laboratorio de Subios TECNICO LABORATORIO

ORRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 35 89

RUC 20607134520

Dirección: calle Javier prado mz bi13 lt 27 A.H. San Martin 26 octubre - Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABLIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL

SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO PROVINCIA DE FECHA DE MUESTRED : 31/01/2022

MORROPON, DEPARTAMENTO DE PIURA.

TRAMO : CARRETERA BATANES A SAN PEDRO

CANTERA
DESCRIPCION : CAUCATA 08
UB. MUESTR A : CAUCATA 08

TEC. LABORATORIO: CHALINGER OF ING. RESPONSABLE: WILMER CORDOVA.

FECHA DE ENSAYO : 08/02/2022 N° DE REGISTRO : CJK03-135

DATOS DE LAMUESTRA

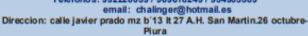
CALICATA :: C-8
MUESTRA :N' 01
PROF. (m) :1.5

PROYECTO

LIMITE LIQUIDO									
N°TARRO	101	102	103						
PESO TARRO + SUELO HUMEDO (g)	62.19	63.36	61.23						
PESO TARRO + SUELO SECO (g)	45.89	46.26	4421						
PESO DE AGUA (g)	16.30	17.10	17.02						
PESO DEL TARRO (g)	11.99	12.03	1232						
PESO DEL SUELO SECO (g)	33.9	34.2	31.9						
CONTENIDO DE HUMEDAD (%)	48.1	50.0	53.4						
NUMERO DE GOLPES	36	27	16						

LMITE PLASTICO									
N°TARRO	21	22							
PESO TARRO + SUELO HUMEDO (g	21.03	21.21							
PESO TARRO + SUELO SECO (g	18.43	18.59							
PESO DE AGUA (g	2.6	2.6							
PESO DEL TARRO (g	7.02	6.98							
PESO DEL SUELO SECO (g	11.4	11.6							
CONTENIDO DE DE HUMEDAD (9	22.8	22.6							

CONSTANTES FISIC AS DE LA MUESTRA							
LIMITELIQUIDO	50.5						
LIMITE PLASTICO	22.7						
INDICE DE PLASTICIDAD	27.8						


Chasinger Obragón Flore. Técnico de Laboratorio de Suelas TECNICO DE LABORATORIO With Opt Librication Corporal Regional and Particular of Mana ING. RESPONSABLE

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION

Teléfonos: 992220059 / 969678249 / 954983589

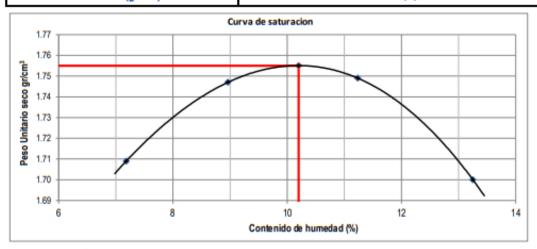
CJK 4 - 135

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL OBRA SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.


TÉCNICO CHALINGER O.

Nº REGISTRO

CALICATA 8 10/02/22 FECHAM.

ING. RESP. WILMER CORDOVA FECHA E 25/02/2022 CHALINGER O. HECHO POR

		COMPACTA	ACIÓN		
MÉTODO DE COMPACTACIÓ :	-A-				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5415.0	5482.0	5521.0	5502.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1704	1771	1810	1791	
VOLUMEN DEL MOLDE (cm³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ³)	1.832	1.904	1.946	1.925	
DENSIDAD SECA (gr/cm³)	1.709	1.747	1.749	1.700	
		CONTENIDO DE	HUMEDAD		•
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	400.0	400.0	400.0	400.0	
PESO (SUELO SECO + TARA) (gr)	373.2	367.1	359.6	353.2	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	26.8	32.9	40.4	46.8	
PESO DE SUELO SECO (gr)	373.2	367.1	359.6	353.2	
CONTENIDO DE HUMEDAD (%)	7.2	9.0	11.2	13.3	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.755	ОРТІМО CONT	ENIDO DE HU	MEDAD (%)	10.2

Chalinger Obregon Flore. Técnico de Laboratorio de Suelos

wa ver objected coepes a coepes a december of the Reg Cologo de To best of 94000

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

CJK 5 - 135

CHALINGER O. WILMER CORDOVA

email: chalinger@hotmail.es
Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26 octubre-Piura

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

ING. RESP. CALICATA

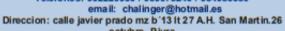
25/02/22 F. INICIO

F. FINAL 01/03/22

N° REG.

TÉC NICO

					DENSID	AD SECA						
Molde N°:				2			2		3			
N° de capa	B:		5			5			5			
N° de golpe	s por capa:		56				25		12			
Condición d	ie la muestra	:		Sumerg	ida		Sumergida	1		Sumergid	а	
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado	
Peso molde	+ suelo húm	nedo	121	95	12352	11	1752	11995	11725	5	12031	
Peso del mo	olde		81	18	8118	7	888	7888	7945		7945	
Volumen de	el molde		211	1.3	2111.3	21	104.0	2104.0	2101.	1	2101.	
% de hume	dad		10.	06	14.26	,	10.1	17.01	10.1		19.13	
Densidad so	eca		1.7	55	1.755	1.	.669	1.668	1.634	,	1.63	
					CONTENIDO	DE HUME	DAD					
Tarro N°												
Tarro + sue	lo húmedo		500).0	500.0	5	0.00	500.0	500.0)	500.0	
Tarro + sue	lo seco		454	1.3	437.6	4	54.3	427.3	454.2		419.	
Peso del ag	jua		45	.7	62.4	4	45.7	72.7	45.8		80.	
Peso de tar	ro											
Peso del su	elo seco		454	1.3	437.6	4	54.3	427.3	454.2		419.	
% de hume	dad		10.1	1%	14.3%	10	0.1%	17.0%	10.1%		19.1%	
					EXPA	NSIÓN						
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPAN	ISIÓN	LECT.	E)	EXPANSIÓN	
dd/mm/aa		h	dial	mm	%	dal	mm	%	dial	mm	%	
25/02/22	15:30	0	0.0			0.0			0.0			
26/02/22	15:30	24	143.0	1.43	1.13	151.0	1.51	1.19	162.0	1.62	1.28	
27/02/22	15:30	48	168.0	1.68	1.32	180.0	1.80	1.42	185.0	1.85	1.46	
28/02/22	15:30	72	184.0	1.84	1.45	194.0	1.94	1.53	211.0	2.11	1.66	
01/03/22	15:30	96	213.0	2.13	1.68	222.0	2.22	1.75	260.0	2.60	2.05	
					C	BR						
DENETOA	CIÓN (x10 ⁴)	Carga		MOLDE	N° 2	MOLDE N° 2			MOLDE N° 3			
PENETRA	CION (XIO.)	Estándar	Lectura	Co	rrección	Lectura	Соте	oción	Lectura	C	arrección	
mm	puig	Kg/cm2	dial	Kg	Kg/cm2	dal	Kg	Kg/cm2	dial	Kg	Kg/cm2	
0.635	0.025		11	11	0.5	8	8	0.4	5	5	0.2	
1.270	0.050		15	15	0.7	12	12	0.6	9	9	0.4	
1.905	0.075		20	20	1.0	14	14	0.7	10	10	0.5	
2.540	0.100	70.31	32	32	1.6	20	20	1.0	14	14	0.7	
3.810	0.150		70	70	3.5	51	51	2.5	36	36	1.8	
5.080	0.200	105.46	140	140	6.9	120	120	5.9	97	97	4.8	
6.350	0.250		200	200	9.9	164	164	8.1	126	126	6.2	
7.620	0.300		281	281	13.9	243	243	12.0	210	210	10.4	
10.160	0.400		360	360	17.8	330	330	16.3	290	290	14.3	
12.700	0.500		447	447	22.1	405	405	20.0	350	350	17.3	



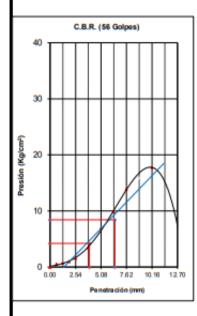
MUESTRA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

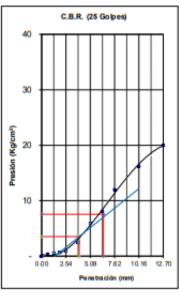
octubre-Piura

ROYECTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE Nº REG.

C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON


DEPARTAMENTO DE PIURA.

CJK 5- 135 TÉCNICO CHALINGER O.


ING. RESP. WILMER CORDOVA

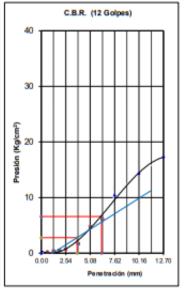
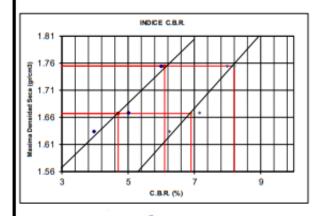

FECHA DE MUESTREO 25/02/22 FECHA DE ENSAYO 01/03/22

GRÁFICO PENETRACIÓN DE CBR

8



CBR 0.1" (%)= 6.0 CBR 0.2" (%)= 8.0 Densidad Seca (gr/cc): 1.755 CBR 0.1" (%)= 5.0 CBR 0.2" (%)= 7.2 Densidad Seca (gr/cc) : 1.669

CBR 0.1" (%)= 4.0 CBR 0.2" (%)= 6.2 Densidad Seca (gr/cc): 1.634

DETERMINACIÓN DEL CBR

Datos de Proctor:									
Densidad Seca 100%	1.755	gr/cm3							
Óptimo Humedad	10.20	%							
Densidad Seca 95%	1.667	gr/cm3							

C.B.R. (95% M.D.S.) 0.1":	4.7
C.B.R. (100% M.D.S.) 0.1":	6.1
C.B.R. (95% M.D.S.) 0.2":	6.9
C.B.R. (100% M.D.S.) 0.2":	8.2

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

INFORME DE ENSAYOS - CALICATA 09

LABORATORIO DE SUELOS Y PAVIMENTOS CJK **OBRAS CIVILES - PROYECTOS Y SUPERVISION**

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

REGISTRO DE EXCAVACION

NORMA TECNICA: ASTM D 2488

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES AC.P. SAN PEDRO, PROVINCIA DE MORROPON.

DEPARTAMENTO DE PIURA.

TRAMO : CARRETERA BATANES A SAN PEDRO CANTERA

MATERIAL : = CALICATA09

UBICACIÓN IQM 7+500

OBRA

FECHA DE MUESTREO: 31/01/2022

TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILWER CORDOVA. FECHA DE ENSAYO: 0602/2022

Nº DE REGISTRO: CJK001-137

DATOS DE LAMUESTRA

CALICATA : C-9 MUESTRA : Nº 01 PROF. (m)

COORDENADAS

REGISTRO DE EXCAVACION DE CALICATAS

			ESTRATO		CLASI	r.	GR	UNULOMET	NA		UMTES		
PROF.	M.	GRAFICO	Espesor (CM)	CARACTERISTICAS GEOTECNICAS	AASHTO	sucs	5" A Nro. 4	Nra. 4 8 Nra. 200	Menor Nro. 200	L.L	LP.	LP.	HUM. NAT.
0.00 0.20 0.40 0.60 0.00 1.00 1.20 1.40 1.60 2.00 2.20 2.40		α	1.5	De 0.00 a 0.30 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rodadura en la actualidad. De 0.30 a 1.5 mt se encuentra el suelo natural CH;arcilla de alta plasticidad con arena con material variable de media a alta plastica, con humedad de 5.2 % con comentacion de moderad a alta, que representa el 20.4% del suelo; Fino sque representan el 79.5 % del suelo. El estrato es de estructura homogenea, de compacidad alta, de color marron.	A-7-6 2(0)	СН	0.3	Nr.a. 200	Nero. 200	52.2	25.5	26.7	5.2
2.80													

Chalinger Obiegon Flore. Turice de Laboratorio de Sustan

TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

FECHADE MUESTREO: 31/01/2022 TEC. LABORATORIO: CHALNGER O.F.

ING. RESPONSABLE: WILMER CORDOVA.

Teléfonos: 992220099 / 969678249 / 954983589

RUC 20507134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D-422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO

EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PROYECTO

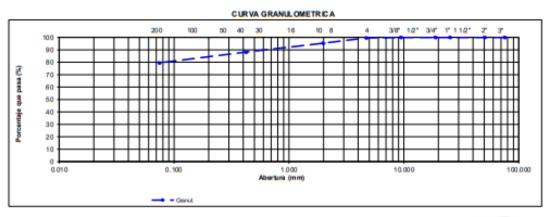
PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

TRAM O

CANTERA DESCRIPCION: CALICATA 09

: CARRETERA BATANES A SAN PEDRO

FECHA DE ENSAYO: 06/02/2022 UB. M UESTR #: KM 7+500 Nº DEREGISTRO: CJK002-137


DATOS DE LA MUESTRA

TAM AÑO MAXIM O CALICATA : C-9

MUESTRA : N° 01 Peso inicial seco: 2863 PROF. (m) Fraccion Fina 286.3

TAMIZ	AASHTOT-27	PESO .	PORCENTAJE	RETENIDO	PORCENTAJE	ESPECIFICACION	DESCRIPCION DE LA MUESTRA		
TAME.	(mm)	RETENIDO	RETENIDO	ACUMULADO	QUE PASA				
3*	76.200						Contenido de Humedad	(%):	5.20
2"	50.800						Peso de la Tara (g):		0.00
1 1/2"	38.100						Peso Tara+Suelo Humi	(g):	301.2
1"	25.400						Peso Tara+Suelo Sec.(g):	286.3
3/4"	19.000						Pesodel Agua (g):		14.9
1/2"	12500						Peso del Suelo Seco (gi):	286.3
3/8"	9.500								
1/4"	6.350								
Nº 4	4.750	1.0	0.3	0.3	99.7				
Nº8	2360								
Nº 10	2000	12.3	4.3	4.6	95.4		Descripción	A-7-6(20)	MALO
№ 16	1.190						(AASHTO):	A-1 -0(20)	IMPACO
N° 20	0.840	11.1	3.9	8.5	91.5		Descripción	Arcilla de alta o	asticidad con arena
Nº 30	0.600						(SUCS):	re dia de a da pr	as ocrasic corr are rici
№ 40	0.425	9.4	3.3	11.8	88.2		OBSERVACIONES:		
Nº 50	0.300								
Nº 80	0.177						Bdoneria > 3" :		0.0
№ 100	0.150	12.2	4.2	16.0	84.0		Grava 3" - Nº 4 :		0.3
№ 200	0.075	12.8	4.5	20.5	79.5		Arena Nº4 - Nº 200 :		20.1
< N° 200	FONDO	228.5	79.5	100.0			Finos < Nº 200 :		79.5

	CARACT	ERISTICA FISICA Y	QUÍMICA D	E LA MUESTI	RA	
Limite liquido (%)	52.23					
Limite Plastico (%)	25.53					
Indice plástico (%)	26.70					
Clasificación: SUCS.	CH					
AASHTO	A-7-6 (20)					
Cu C	c					

Chalinger Obregon Flore Técnice de Laboratorio de Suales TECNICO LABORATORIO

nierosymboccoccia co

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 9 92 220 059 / 9 696 782 49 / 95 498 35 89

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin 26 octubre- Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D-4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABLIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL

SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO PROVINCIA DE FECHA DE MUESTREO : 31/01/2022

MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO

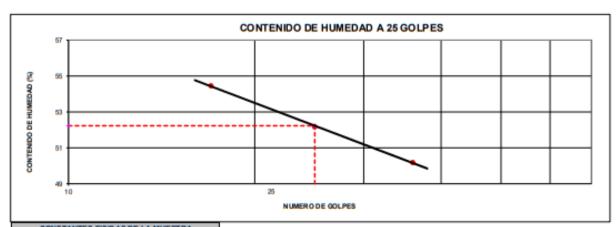
CANTERA

DESCRIPCION: CAUCATA 09

UB. MUESTRA: KM 7+500

TEC. LABORATORIO: CHALINGER OF ING. RESPONSABLE: WILMER CORDOVA.

FECHA DE ENSAYO: 08/02/2022 Nº DE REGISTRO : CJK03-137

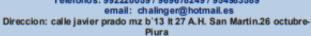

DATOS DE LA MUESTRA

CALICATA :C-9 MUESTRA :N° 01 PROF. (m) 1.5

PROYECTO

LIMITE LIQUIDO										
N°TARRO	107	108	109							
PESO TARRO + SUELO HUMEDO (g)	69.15	62.13	65.03							
PESO TARRO + SUELO SECO (g)	50.17	44.34	4626							
PESO DE AGUA (g)	18.98	17.79	18.77							
PESO DEL TARRO (g)	12.35	10.24	11.79							
PESO DEL SUELO SECO (g)	37.8	34.1	34.5							
CONTENIDO DE HUMEDAD (%)	50.2	52.2	54.5							
NUMERO DE GOLPES	36	25	17							

LMITE PLASTICO										
N° TARRO		14	15							
PESO TARRO + SUELO HUMEDO	(g)	23.65	24.15							
PESO TARRO + SUELO SECO	(g)	21.39	21.78							
PESO DE AGUA	(g)	2.3	2.4							
PESO DEL TARRO	(g)	12.56	12.47							
PESO DEL SUELO SECO	(g)	8.8	9.3							
CONTENIDO DE DE HUMEDAD	(%)	25.6	25.5							


CONSTANTES FISIC AS DE LA MUESTRA						
LIMITELIQUIDO	52.2					
LIMITE PLASTICO	25.5					
INDICE DE PLASTICIDAD	26.7					

Chaitinger Obergon Flore. Testico de Laboratorio de Suelos TECNICO DE LABORATORIO

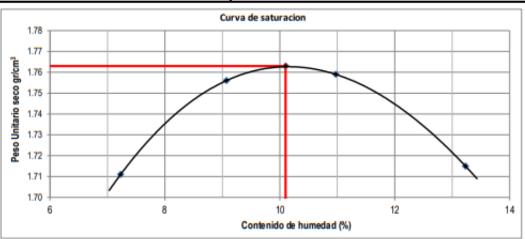
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL OBRA SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO

Nº REGISTRO CJK 4 - 137


PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

TÉCNICO CHALINGER O. ING. RESP. WILMER CORDOVA

CALICATA FECHAM. 31/01/22 FECHA E

10/02/2022 CHALINGER O. HECHO POR

		COMPACTA	ACIÓN .		
MÉTODO DE COMPACTACIÓ :	"A"				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5418.0	5493.0	5527.0	5517.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1707	1782	1816	1806	
VOLUMEN DEL MOLDE (cm ³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm³)	1.835	1.916	1.952	1.942	
DENSIDAD SECA (gr/cm ³)	1.711	1.756	1.759	1.715	
		CONTENIDO DE	HUMEDAD		<u> </u>
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	445.0	445.0	445.0	445.0	
PESO (SUELO SECO + TARA) (gr)	415.0	408.0	401.0	393.0	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	30.0	37.0	44.0	52.0	
PESO DE SUELO SECO (gr)	415.0	408.0	401.0	393.0	
CONTENIDO DE HUMEDAD (%)	7.2	9.1	11.0	13.2	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.763	ОРТІМО CONT	ENIDO DE HU	MEDAD (%)	10.1

Chalinger Oldegon Flore. Técnico de Laboratorio de Sualos LER OSTALIDO CORDOVA CORDOVA GUERNARIO CIVIL Reg. Cologo: the Topinston in garage

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

email: chalinger@hotmail.es
Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26 octubre-Piura

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO

TÉCNICO

N° REG.

CJK 5 - 137 CHALINGER O.

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA. CALICATA

9

WILMER CORDOVA ING. RESP.

F. INICIO 10/02/22 14/02/22 F. FINAL

					DENSID	AD SECA						
Molde N°:				7			8			9		
N° de capas	N° de capas:			5			5					
N° de galpe	s por capa:			56			25			12	2	
Condición de	e la muestra:			Sumerg	ida		Sumergida			Sumergid	а	
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado	
Peso molde	+ suelo húm	edo	120	79	12203	1:	2009	12198	11800)	12049	
Peso del mo	olde		79	98	7998	8	102	8102	8032		803	
Volumen de	l molde		209	6.1	2096.1	21	101.1	2101.1	2095.1	1	2095.	
% de humeo	iad		10.	31	13.58		10.3	15.55	10.3		17.5	
Densidad se	ca		1.7	65	1.766	1	.686	1.687	1.630		1.63	
					CONTENIDO	DE HUME	DAD					
Tarro N°												
Tarro + suel	o húmedo		460	0.0	460.0	4	60.0	460.0	460.0		460.	
Tarro + suel	o seco		417	7.0	405.0	4	17.0	398.1	417.0		391.	
Peso del ag	ua		43	.0	55.0	4	13.0	61.9	43.0		68.	
Peso de tam	0											
Peso del su	elo seco		417	7.0	405.0	4	417.0		417.0		391.	
% de humeo	dad		10.3	3%	13.6%	10	0.3%	15.5%	10.3%	,	17.69	
					EXPA	NSIÓN						
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPAN	ISIÓN	LECT.	EX	PANSIÓN	
dd/mm/aa		h	dial	mm	%	dial	mm	%	dial	mm	%	
10/02/22	15:30	0	0.0			0.0			0.0			
11/02/22	15:30	24	129.0	1.29	1.02	142.0	1.42	1.12	159.0	1.59	1.25	
12/02/22	15:30	48	154.0	1.54	1.21	168.0	1.68	1.32	192.0	1.92	1.51	
13/02/22	15:30	72	171.0	1.71	1.35	179.0	1.79	1.41	245.0	2.45	1.93	
14/02/22	15:30	96	203.0	2.03	1.60	225.0	2.25	1.77	269.0	2.69	2.12	
					C	BR						
DENETRA	DIÓN (x10 ⁴)	Carga		MOLDE	N° 7	MOLDE N° 8			MOLDE N° 9			
PENETRAC	NOW (XIO.)	Estándar	Lectura	Co	rrección	Lectura	Corre	oción	Lectura	C	arrección	
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	dial	Kg	Kg/cm2	dal	Kg	Kg/cm2	
0.635	0.025		11	11	0.5	8	8	0.4	5	5	0.2	
1.270	0.050		15	15	0.7	11	11	0.5	9	9	0.4	
1.905	0.075		22	22	1.1	15	15	0.7	12	12	0.6	
2.540	0.100	70.31	38	38	1.9	27	27	1.3	20	20	1.0	
3.810	0.150		80	80	3.9	60	60	3.0	42	42	2.1	
5.080	0.200	105.46	140	140	6.9	121	121	6.0	100	100	4.9	
6.350	0.250		205	205	10.1	197	197	9.7	160	160	7.9	
7.620	0.300		270	270	13.3	245	245	12.1	223	223	11.0	
10.160	0.400		350	350	17.3	330	330	16.3	290	290	14.3	
12.700	0.500		440	440	21.7	400	400	19.7	350	350	17.3	

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

email: chalinger@hotmail.es Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubre - Piura

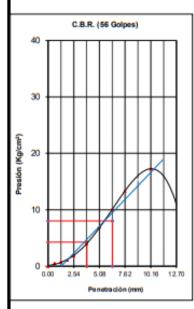
ROYECTO

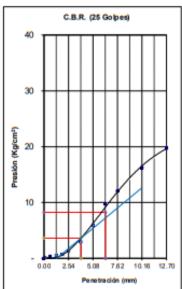
APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE Nº REG. C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

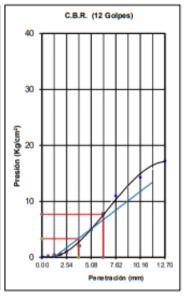
DEPARTAMENTO DE PIURA

TÉCNICO

CJK 5- 137 CHALINGER O.

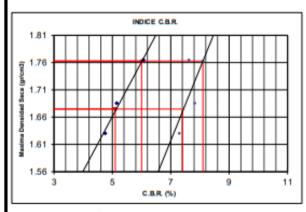

MUESTRA


ING. RESP. WILMER CORDOVA


FECHA DE MUESTREO 10/02/22

FECHA DE ENSAYO 14/02/22

GRÁFICO PENETRACIÓN DE CBR



CBR 0.1" (%)= 6.1 CBR 0.2" (%)= 7.6 Densidad Seca (gr/cc): 1.765 CBR 0.1*(%)= 5.2 CBR 0.2" (%)= 7.8 Densidad Seca (gr/cc) : 1.686 CBR 0.1" (%)= 4.8 CBR 0.2" (%)= 7.3 Densidad Seca (gr/cc): 1.630

DETERMINACIÓN DEL CBR

Datos de	MOUN	И.		
Densidad	Seca	100%	1.763	gr/cm3

Densidad Seca 100%	1.763	gr/cm3
Óptimo Humedad	10.10	%
Densidad Seca 95%	1.675	gr/cm3

C.B.R. (95% M.D.S.) 0.1":	5.1
C.B.R. (100% M.D.S.) 0.1":	6.0
C.B.R. (100% M.D.S.) 0.1": C.B.R. (95% M.D.S.) 0.2":	7.4
C.B.R. (100% M.D.S.) 0.2":	8.1

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

INFORME DE ENSAYOS - CALICATA 10

LABORATORIO DE SUELOS Y PAVIMENTOS CJK OBRAS CIVILES - PROYECTOS Y SUPERVISION GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

REGISTRO DE EXCAVACION

NORMATECNICA: ASTM D 2488

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES AC.P. SAN PEDRO, PROVINCIA DE MORROPON.

DEPARTAMENTO DE PIURA

TRAMO : CARRETERA BATANES A SAN PEDRO

CANTERA

MATERIAL ::CAUCATA10 UBICACIÓN : KM 8+500

DATOS DE LAMUESTRA

CALICATA : C-10 MUESTRA

: N° 01 PROF. (m) : 1.5

COORDENADAS

FECHA DE MUESTREO: 31/01/2022

TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILMER CORDOVA.

Nº DE REGISTRO: CJK001-138

FECHA DE ENSAYO: 0602/2022

REGISTRO DE EXCAVACION DE CALICATAS

PROF. M. GRAFICO Espeso		ESTRATO		CLASIF.		GRANUL OMETRIA			UMTES			
		Espesor (CM.)	CARACTERISTICAS GEOTECNICAS	AASHTO	sucs	5 A 0.4	Nra. 4 8 Nra. 200	Menor Nro. 200	F	LP.	LR	HUM. NAT.
	///											
	///											
	α/		organica usado como capa de rodadura									
	///		a 1.5 mt se encuentra el suelo natural									
	///		CH;arcilla de alta plasticidad con material	A 7.6 200	CH.		11.0	00 1	50.9	10.0	22.0	7.2
		1.0	humedad de 7.2 % con cementacion de	A-1-6 2(0)	CH	0.0	11.8	00.1	30.3	10.3	32.0	1.2
			moderada a alta, que representa el 11.9%									
			del suelo; Finos que representan el 88.1 % del suelo. El estrato es de estructura									
			beige.									
	M.		M. GRAFICO Espesar (CM.)	M. GRAFICO Espesor (CMI) De 0.00 a 0.40 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rodad ura en la actualidad. a 1.5 mt se encuentra el suelo natural CH;arcilla de alta plasticidad con material variable de media a alta plastica, con humedad e 7.2 % con cementra cion de moderada a alta, que representa el 11.9% del suelo; Fin os que representa el 88.1 %	CL De 0.00 a 0.40 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rodadura en la actualidad. De 0.40 a 1.5 mt se encuentra el suelo natural CH;arcilla de alta plasticidad con material variable de media a alta plastica, con humedad de 7.2 % con cementacion de moderada a alta, que representa el 11.9% del suelo; Finos que representa el 88.1 % del suelo. El estrato es de estructura homogenea, de compacidad alta, de co lor	De 0.00 a 0.40 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rodadura en la actualidad. 1.5 mt se encuentra el suelo natural CH;arcilla de alta plasticidad con material variable de media a alta plasticida con material variable de media a alta plastica, con humedad de 7.2 % con cementacion de moderada a alta, que representa el 11.9% del suelo; Finos que representa el 81.1 % del suelo; Finos que representa el 81.1 % del suelo. Elestrato es de estructura homogenea, de compacidad alta, de color	M. GRAFICO Espesor (CM) De 0.00 a 0.40 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rodadura en la actualidad. De 0.40 a 1.5 mt se encuentra el suelo natural CH;arcilla de alta plasticidad con material variable de media a alta plasticidad con material variable de media a alta plasticidad con material de suelo. Elestrato es de estructura h omogenea, de compacidad alta, de co lor	M. GRAFICO Espesor (CM) De 0.00 a 0.40 mt se encontro un suelo contaminado con gravay materia organica usado como capa de rodad ura en la actualidad. De 0.40 a 1.5 mt se encuentra el suelo natural CH;arcilla de alta plasficidad con material variable de media a alta plasficidad con material variable de moderada a alta, que representa el 11.9% del suelo; Finos que representan el 88.1 % del suelo; Finos que representan el 88.1 % del suelo; Elestrato es de estructura homogenea, de compacidad alta, de color	M. GRAFICO Espesor (CM) De 0.00 a 0.40 mt se encontro un suello contaminado con grava y materia organica usado como capa de rodadura en la actualidad. De 0.40 a 1.5 mt se encuen tra el suelo natural CH;arcilla de alta plasticidad con material vaniable de media a alta plasticidad con material vaniable de media a alta plasticidad con material vaniable de media a alta plasticidad con material homogenea, de compacidad alta, de color	M. GRAFICO Espesior (CM) De 0.00 a 0.40 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rod adura en la actualidad. De 0.40 a 1.5 mt se encuentra el suelo natural CH;arcilla de alta plasticidad con material variable de media a alta plasticidad con material variable de media a alta plasticidad con moderada a la moderada a alta, que representa el 11.9% del suelo. El estrato es de estructura homogenea, de compacidad alta, de color	M. GRAFICO Espesior (CM) De 0.00 a 0.40 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rod adura en la actualidad. De 0.40 a 1.5 mt se encuentra el suelo natural CH;arcilla de alta plasticidad con material variable de media a alta plasticidad con humedad de 7.2 % con cementacion de moderada a alta. que representa el 11.9% del suelo. El estrato es de estructura homogenea, de compacidad alta, de color	M. GRAFICO Espesior (CM) De 0.00 a 0.40 mt se encontro un suelo contaminado con grava y materia organica usado como capa de rod adura en la actualidad. De 0.40 a 1.5 mt se encuentra el suelo natural CH;arcilla de alta plasticidad con material variable de media a alta plasticidad con material moderada a alta. que representa el 11.9% del suelo. El estrato es de estructura homogenea, de compacidad alta, de color

TECNICO LABORATORIO

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmailes

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 358 9

RUC 20807134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin 26 octubre - Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D-422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO PROYECTO

EL SISTEMA CONSOLID EN EL TRAM O ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

: CARRETERA BATANES A SAN PEDRO

CANTERA

DESCRIPCION: CALIC AT A 10 UB. M UESTR /: KM 8+500

:N° 01

:1.5

CALICATA

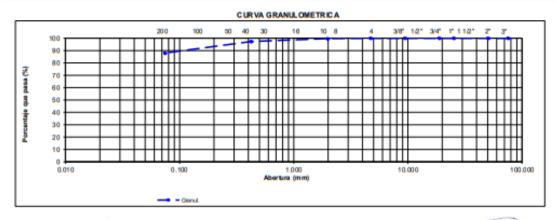
MUESTRA

PROF. (m)

FECHADE MUESTREO: 31/01/2022 TEC. LABORATORIO: CHALNGER O.F. ING. RESPONSABLE: WILMER CORDOVA.

FECHA DE ENSAYO: 06/02/2022 Nº DE REGISTRO : GJK0002-138

DATOS DE LA MUESTRA


TAM AÑO MAXIM O

Peso inicial seco: 3323

Fraccion Fina 3323

TAMIZ	AASHTO T-27	PESO	PORCENTAJE	RETENIDO	PORCENTAJE	ESPECIFICACION	DESCRIPCION DE LA MUESTRA			
1 ANNIE	(mm)	RETENIDO	RETENIDO	ACUMULADO	QUE PASA					
3"	76.200						Contenido de Humedad	(%):	7.19	
2"	50.800						Peso de la Tara (g):		0.00	_
1 1/2"	38,100						Peso Tara+Suelo Hum.(g):	356.2	
1"	25,400						Peso Tara+Suelo Sec./g	D:	332.3	Ξ
3/4"	19.000						Pesodel Agua (g):		23.9	Ξ
1/2"	12500						Peso del Suelo Seco (g)		332.3	
3/8"	9.500									
1/4"	6.350									
Nº 4	4.750	0.0	0.0	0.0	100.0					
Nº8	2360									
Nº 10	2000	1.0	0.3	0.3	99.7		Descripción	A-7-6(20)	MALO	
Nº 16	1.190						(AASHTO):	A-1-0(20)	mraco	
Nº 20	0.840	2.2	0.7	1.0	99.0		Descripción	Arcilla de a	ita plasticidad	
Nº 30	0.600						(SUCS):	ra dia de a	on president date	
Nº 40	0.425	5.7	1.7	2.7	97.3		OBSERVACIONES:			
Nº 50	0.300							·		
Nº 80	0.177	The state of the s					Bdoneria > 3" :			
Nº 100	0.150	11.9	3.6	6.3	93.7		Grava 3" - Nº 4 :			
Nº 200	0.075	18.9	5.7	11.9	88.1		Arena Nº4 - Nº 200 :			
< Nº 200	FONDO	292.6	88.1	100.0			Finos < Nº 200 :			

CARACTERÍSTICA FÍSICA Y QUÍMICA DE LA MUESTRA										
Limite liquido (%)			50.28							
Limite Plastico (%)			18.33							
Indice plástico (%)			31.95							
Clasificación: SU	SUCS. C		I							
AAS	SHTO	A-7-6 (20)								
Cu		Ce								

Chalinger Obregin Flore. Tisnice de Laboratorio de Suelos TECNICO LABORATORIO

LABORATORIO DE SUELOS Y PAVIMENTOS CJK

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz bi13 lt 27 A.H. San Martin 26 octubre- Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

ESTUDIO DE ESTABLIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE FECHA DE MUESTREO : 31/01/2022 MORROPON, DEPARTAMENTO DE PIURA.

: CARRETERA BATANES A SAN PEDRO TRAM O

CANTERA

DESCRIPCION: CALICATA 10 UB. MUESTR A: KM 8+500

TEC. LABORATORIO: CHALINGER OF ING. RESPONSABLE: WILMER CORDOVA.

FECHA DE ENSAYO: 08/02/2022 Nº DE REGISTRO: CJK03-138

DATOS DE LAMUESTRA

CALICATA : C-10 MUESTRA :N° 01 PROF. (m) 1.5

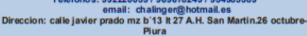
LIMITE LIQUIDO										
Nº TARRO	110	111	112							
PESO TARRO + SUELO HUMEDO (g)	60.21	60.89	61.33							
PESO TARRO + SUELO SECO (g)	43.86	44.01	44.01							
PESO DE AGUA (g)	16.35	16.88	1732							
PESO DEL TARRO (g)	10.23	10.54	10.85							
PESO DEL SUELO SECO (g)	33.6	33.5	332							
CONTENIDO DE HUMEDAD (%)	48.6	50.4	522							
NUMERO DE GOLPES	35	24	17							

LMITE PLASTICO									
Nº TARRO		16	17						
PESO TARRO + SUELO HUMEDO	(g)	17.66	16.98						
PESO TARRO + SUELO SECO	(g)	15.97	15.49						
PESO DE AGUA	(6)	1.7	1.5						
PESO DEL TARRO	(g)	6.89	7.23						
PESO DEL SUELO SECO	(0)	9.1	8.3						
CONTENIDO DE DE HUMEDAD	(%)	18.6	18.0						

CONSTANTES FISICAS DE LA MUESTRA							
LIMITELIQUIDO	50.3						
LIMITE PLASTICO	18.3						
INDICE DE PLASTICIDAD	32.0						

Chaitinger Obragon Flore. Transco de Laboratorio de Suelos

TECNICO DE LABORATORIO


LICENSIA CORDOVA ING. RESPONSABLE

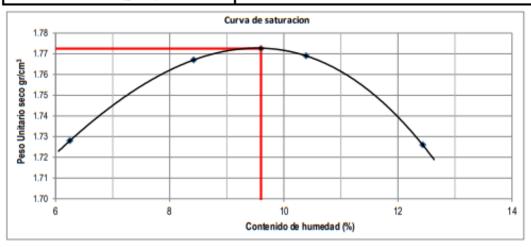
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION

Teléfonos: 992220059 / 969678249 / 954983589

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL OBRA SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO


PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

CALICATA 10 FECHAM. 31/01/22 Nº REGISTRO CJK 4 - 138

TÉCNICO CHALINGER O. ING. RESP. WILMER CORDOVA

10/02/2022 FECHA E CHALINGER O. HECHO POR

		COMPACTA	ACIÓN		
MÉTODO DE COMPACTACIÓ :	-A-				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5419.0	5493.0	5527.0	5516.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1708	1782	1816	1805	
VOLUMEN DEL MOLDE (cm ³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ³)	1.836	1.916	1.952	1.940	
DENSIDAD SECA (gr/cm ³)	1.728	1.767	1.769	1.726	
-		CONTENIDO DE	HUMEDAD		-
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	425.0	425.0	425.0	425.0	
PESO (SUELO SECO + TARA) (gr)	400.0	392.0	385.0	378.0	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	25.0	33.0	40.0	47.0	
PESO DE SUELO SECO (gr)	400.0	392.0	385.0	378.0	
CONTENIDO DE HUMEDAD (%)	6.3	8.4	10.4	12.4	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.773	ОРТІМО CONT	ENIDO DE HU	MEDAD (%)	9.6

Chalinger Obregon Flore. Técnico de Laboratorio de Suelos

wil ver behald coroova coroova decement cover a super-

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26 octubre-

Piura

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROYECTO

TÉCNICO CHALINGER O.

CJK 5 - 138

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

CALICATA 10

ING. RESP. WILMER CORDOVA 10/02/22 F. INICIO

F. FINAL

N° REG.

14/02/22

					DENSID	AD SECA						
Molde N°:				10		11 12						
N° de capa	6:			5			5		5			
N° de golpe	es por capa:			56			25			12		
Condición d	ie la muestra	:		Sumerg	ida		Sumergida			Sumergid	а	
			Sin Si	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado	
Peso molde	e + suelo húm	nedo	123	56	12456	1	1849	12016	11754	1	1198	
Peso del m	olde		82	56	8256	7	912	7912	7947		794	
Volumen de	el molde		210	9.0	2109.0	2	114.0	2114.0	2095.	1	2095	
% de hume	dad		9.0	34	12.35		9.6	14.29	9.6		16.2	
Densidad s	eca		1.7	73	1.773	1	.699	1.699	1.657		1.65	
					CONTENIDO	DE HUME	DAD					
Tarro N°												
Tarro + sue	lo húmedo		45	5.0	455.0	4	55.0	455.0	455.0		455	
Tarro + sue	lo seco		415	5.0	405.0	4	15.0	398.1	415.0		391	
Peso del ag	gua		40	.0	50.0		40.0	56.9	40.0		63.	
Peso de tar	то											
Peso del su	ielo seco		41	5.0	405.0	4	15.0	398.1	415.0		391.	
% de hume	dad		9.6	1%	12.3%	9	.6%	14.3%	9.6%		16.39	
					EXPA	NSIÓN						
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT. EXPANSIÓN			LECT.	(PANSIÓN		
dd/mm/aa		h	dial	mm	%	dial	mm	%	dial	mm	%	
10/02/22	15:30	0	0.0			0.0			0.0			
11/02/22	15:30	24	129.0	1.29	1.02	142.0	1.42	1.12	159.0	1.59	1.25	
12/02/22	15:30	48	154.0	1.54	1.21	168.0	1.68	1.32	192.0	1.92	1.51	
13/02/22	15:30	72	171.0	1.71	1.35	179.0	1.79	1.41	245.0	2.45	1.93	
14/02/22	15:30	96	203.0	2.03	1.60	225.0	2.25	1.77	269.0	2.69	2.12	
						BR						
PENETRA	CIÓN (x10 ¹)	Carga		MOLDE			MOLDE N°		M	OLDE N°		
	contain)	Estándar	Lectura	Co	rrección	Lectura	Соте	oción	Lectura C		orrección	
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	dial	Kg	Kg/cm2	dial	Kg	Kg/cm2	
0.635	0.025		15	15	0.7	10	10	0.5	6	6	0.3	
1.270	0.050		19	19	0.9	15	15	0.7	10	10	0.5	
1.905	0.075		24	24	1.2	20	20	1.0	15	15	0.7	
2.540	0.100	70.31	35	35	1.7	25	25	1.2	20	20	1.0	
3.810	0.150		90	90	4.4	71	71	3.5	52	52	2.6	
5.080	0.200	105.46	140	140	6.9	116	116	5.7	92	92	4.5	
6.350	0.250		200	200	9.9	180	180	8.9	140	140	6.9	
7.620	0.300		285	285	14.1	246	246	12.1	200	200	9.9	
10.160	0.400		360	360	17.8	320	320	15.8	290	290	14.3	
12.700	0.500		440	440	21.7	410	410	20.2	380	380	18.7	

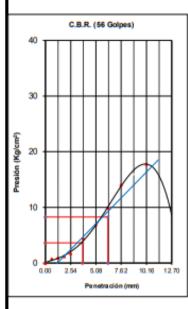
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

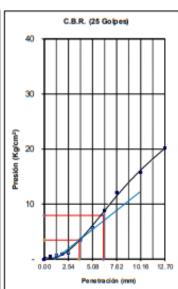
email: chalinger@hotmail.es Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubre - Piura

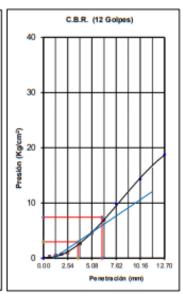
CJK 5- 138

APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE N° REG. PROYECTO

C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

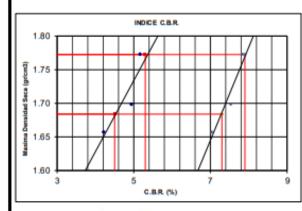

DEPARTAMENTO DE PIURA.


MUESTRA 10 TÉCNICO CHALINGER O. ING. RESP.


WILMER CORDOVA

FECHA DE MUESTREO 10/02/22 FECHA DE ENSAYO 14/02/22

GRÁFICO PENETRACIÓN DE CBR



CBR 0.1" (%)= 5.2 CBR 02" (%)= 7.8 Densidad Seca (gr/cc): 1.773 CBR 0.1*(%)= 4.9 CBR 0.2" (%)= 7.5 1.699 Densidad Seca (gr/cc) :

CBR 0.1" (%)= 4.2 CBR 0.2" (%)= 7.0 Densidad Seca (gr/cc): 1.657

DETERMINACIÓN DEL CBR

Datos de Frodor.								
Densidad Seca 100%	1.773	gr/cm3						
Óptimo Humedad	9.60	%						
Densidad Seca 95%	1.684	gr/cm3						

C.B.R (95% M.D.S.) 0.1":	4.5
C.B.R. (100% M.D.S.) 0.1":	5.3
C.B.R. (95% M.D.S.) 0.2":	7.3
C.B.R. (100% M.D.S.) 0.2":	7.9

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

Datos da Prostor:

INFORME DE ENSAYOS - CALICATA 11

LABORATORIO DE SUELOS Y PAVIMENTOS CJK

OBRAS CIVILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

REGISTRO DE EXCAVACION

NORMA TECNICA: ASTM D 2488

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES AC.P. SAN PEDRO, PROVINCIA DE MORROPON. OBRA

DEPARTAMENTO DE PIURA.

TRAMO : CARRETERA BATANES A SAN PEDRO CANTERA

MATERIAL ::CAUCATA11

UBICACIÓN : KW 9+500 FECHA DE MUESTREO: 3101/2022

TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILWER CORDOVA.

FECHA DE ENSAYO: 0602/2022 Nº DE REGISTRO: CJK00 1-139

DATOS DE LAMUESTRA

CALICATA COORDENADAS : C-11 MUESTRA : N° 01

REGISTRO DE EXCAVACION DE CALICATAS

			ESTRATO		CLASI	E.	GR	ANULONETI	N/A		UMTES		
PROF.	M.	GRAFICO	Espesor (CM.)	CARACTERISTICAS GEOTECNICAS	AASHTO	sucs	3" A Nro. 4	Nra. 4 8 Nra. 200	Menor Nro. 200	F	LP.	I.R.	HUM. NAT.
0.00													
0.20													
0.40		1///											
0.60		///		De 0.00 a 0.40 mt se encontro un suelo									
0.80		///		contaminado con grava y materia									
1.00		/ a/		organica usado como capa de rodadura en la actualidad. De 0.40									
1.20		///		a 15 mt se encuentra el suelo natural									
1.40		///		CH;arcilla de alta plasticidad con material									
1.60		///	1.5	variable de media a alta plastica, con humedad de 7.3% con cementacion de	A-7-6 2(0)	CH	0.0	14.8	85.2	53.8	22.3	31.5	7.3
1.80				moderada a alta, que representa el 14.8%									
2.00				del suelo; Finos que representan el 85.2 %									
2.20				del suelo. El estrato es de estructura homogenea, de compacidad alta, de color									
2.40				marron claro.									
2.60													
2.80													
3.00													

Chalinger Obiegon Flore. Ticrice de Laboratorio de Sublar

TECNICO LABORATORIO

ING. RESPONSABLE

LABORATORIO DE SUELOS Y PAVIMENTOS CJK

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: challinger@hotmail.es

Teléfonos: 992 220 059 / 9 696 782 49 / 95 498 358 9

RUC 20807134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D-422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO

EL SISTEMA CONSOLID EN EL TRAM O ENTRE EL C.P. BATANES A C.P. SAN PROYECTO

PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO CANTERA

DESCRIPCION: CALIC AT A 11

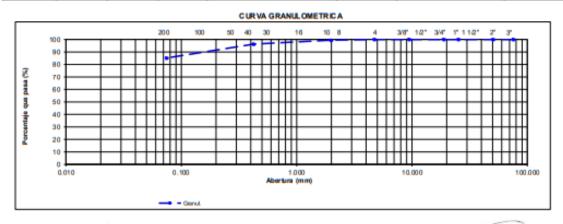
UB. M UESTR #: KM 9+500

PROF. (m)

FECHADE MUESTREO: 31/01/2022 TEC. LABORATORIO: CHALINGER O.F.

ING.RESPONSABLE: WILMER CORDOVA. FECHA DE ENSAYO: 06/02/2022

Nº DEREGISTRO: CJK002-139


DATOS DE LAMUESTRA

CALICATA C-11 TAM AÑO MAXIMO MUESTRA :Nº 01

Peso inicial seco: 278.2 Fraccion Fina 278.2

AASHTO T-27 PESO PORCENTAJE RETENDO PORCENTAJE ESPECIFICACION DESCRIPCION DE LA MUESTRA TAMIZ (mm) RETENIDO RETENIDO ACUMULADO QUE PASA 76,200 Contenido de Humedad (%): 50.800 Peso de la Tara (g): 0.00 1.1/2 38,100 Peso Tara+Suelo Hum.(g): 298.4 1" 25,400 Peso Tara+Suelo Sec.(g): 278.2 3/4" 19.000 Pesodel Agua (g): 1/2* 12500 Peso del Suelo Seco (g): 3/8" 9.500 1/4" 6.350 Nº4 4.750 0.0 0.0 100.0 Nº8 2360 0.5 99.5 Descripción 2000 1.5 A-7-6(20) MALO Nº 16 1.190 (AASHTO): 0.0 Descripción Nº 20 0.840 0.9 1.4 98.6 2.5 Arcilla de alta plasticidad (SUCS): Nº 30 0.600 OBSERVACIONES Nº 40 0.425 6.4 2.3 3.7 963 Nº 50 0.300 Nº80 0.177 Bdoneria > 3* 0.0 Grava 3" - Nº 4: Nº 100 0.150 0.0 11.2 4.0 7.8 922 Arena Nº4 - Nº 200 Nº 200 14.8 0.075 19.6 148 852 < Nº 200 FONDO 237.0 85.2 100.0 Finos < Nº 200 : 85.2

	CARACTERÍSTICA FÍSICA Y QUÍMICA DE LA MUESTRA										
Limite liquido	(%)		53.79								
Limite Plastice	0 (%)		22.27								
Índice plástico	(%)		31.52								
Clasificación:	SUCS.	C	Н								
	AASHTO	A-7-6	(20)								
Cu		Ce									

Chatchper Obegon Flore. Téanice de Laboratorio de Suplan TECNICO LABORATORIO

Landston of Cobacca a Cobacca Sugar

ING RESPONSABLE

LABORATORIO DE SUELOS Y PAVIMENTOS CJK

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 35 89

RUC 20607134520

Dirección: calle Javier prado mz bi13 lt 27 A.H. San Martin 26 octubre - Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL

SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE FECHA DE MUESTRED : 31/01/2022 MORROPON, DEPARTAMENTO DE PIURA.

: CARRETERA BATANES A SAN PEDRO TRAM O

CANTERA **DESCRIPCION: CALICATA 11**

UB. MUESTRA: KM 9+500

TEC. LABORATORIO: CHAUNGER OF ING. RESPONSABLE: WILKER CORDOVA.

FECHA DE ENSAYO: 08/02/2022 Nº DE REGISTRO : CJK03-139

DATOS DE LAMUESTRA

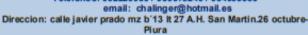
CALICATA : C-11 MUESTRA :N° 01 PROF. (m) 1.5

PROYECTO

LIMITE LIQUIDO										
N° TARRO	113	114	115							
PESO TARRO + SUELO HUMEDO (g)	62.98	70.54	64.86							
PESO TARRO + SUELO SECO (g)	45.23	50.31	45.48							
PESO DE AGUA (g)	17.75	20.23	1938							
PESO DEL TARRO (g)	11.02	12.35	10.89							
PESO DEL SUELO SECO (g)	34.2	38.0	34.6							
CONTENIDO DE HUMEDAD (%)	51.9	53.3	56.0							
NUMERO DE GOLPES	35	27	17							

LMITE PLASTICO									
Nº TARRO	18	19							
PESO TARRO + SUELO HUMEDO (g)	19.86	19.18							
PESO TARRO + SUELO SECO (g)	17.65	17.56							
PESO DE AGUA (g)	2.2	1.6							
PESO DEL TARRO (g)	7.68	10.32							
PESO DEL SUELO SECO (g)	10.0	7.2							
CONTENIDO DE DE HUMEDAD (%)	22.2	22.4							

CONSTANTES FISIC AS DE LA MUESTRA						
LIMITELIQUIDO	53.8					
LIMITE PLASTICO	22.3					
INDICE DE PLASTICIDAD	31.5					


Chaitinger Obergon Flore. Testico de Laboratorio de Suelos TECNICO DE LABORATORIO

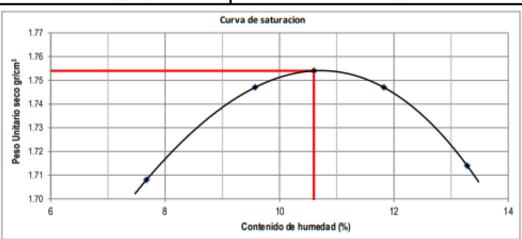
LICENSON CORDONA ING. RESPONSABLE

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL OBRA SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO

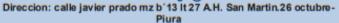

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

CALICATA FECHAM. 31/01/22 Nº REGISTRO CJK 4 - 139

CHALINGER O. TÉCNICO ING. RESP. WILMER CORDOVA

10/03/2022 FECHA E CHALINGER O. HECHO POR

		COMPACTA	ACIÓN		
MÉTODO DE COMPACTACIÓ :	-A-				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5422.0	5492.0	5528.0	5517.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1711	1781	1817	1806	
VOLUMEN DEL MOLDE (cm3)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ⁵)	1.839	1.915	1.953	1.942	
DENSIDAD SECA (gr/cm ³)	1.708	1.747	1.747	1.714	
		CONTENIDO DE	HUMEDAD		
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	435.0	435.0	435.0	435.0	
PESO (SUELO SECO + TARA) (gr)	404.0	397.0	389.0	384.0	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	31.0	38.0	46.0	51.0	
PESO DE SUELO SECO (gr)	404.0	397.0	389.0	384.0	
CONTENDO DE HUMEDAD (%)	7.7	9.6	11.8	13.3	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.754	ОРТІМО СОМТ	ENIDO DE HU	MEDAD (%)	10.2



Chainger Obregon Flore. Técnice de Laboratorio de Suelos we like objected colored a colored a description of the colored and the colore

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

CJK 5 - 139

SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C. P. BATANES Y C. P. SAN PEDRO PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

TÉC NICO CHALINGER O.

11

ING. RESP. WILMER CORDOVA F. INICIO 10/03/22

N° REG.

F. FINAL 14/03/22

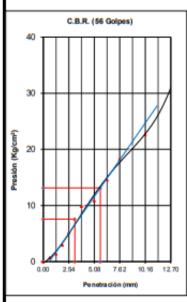
					DENSID						
Molde N°:				1			2			3	
N° de capa	B:			5			5			5	
N° de golpe	es por capa:			56			25			12	
Condición o	ie la muestra	:		Sumerg	ida		Sumergida			Sumergid	а
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Saturar		Saturado
Peso molde	e + suelo húm	nedo	12348		12479	11	1989	12196	11622	2	118
Peso del m	olde		8258		8258	8	145	8145	7900		79
Volumen de	el molde		210	8.0	2108.0	21	111.3	2111.3	2114.0	0	2114
% de hume	dad		10.	63	14.19	1	10.6	16.46	10.6		18.
Densidad s	eca		1.7	54	1.754	1.	.646	1.647	1.592		1.5
					CONTENIDO	DE HUME	DAD				
Tarro N°											
Tarro + sue	lo húmedo		585	5.0	585.0	5	85.0	585.0	585.0		585
Tarro + sue	lo seco		528	3.8	512.3	5	28.8	502.3	528.8	,	493
Peso del ag	gua		56	2	72.7		6.2	82.7	56.2		91
Peso de ta	то										
Peso del su	ielo seco		528	3.8	512.3	5	28.8	502.3	528.8		493
% de hume	dad		10.6	3%	14.2%	10.6%		16.5%	10.6%		18.5
					EXPA	NSIÓN					
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPAN	ISIÓN	LECT. EX		PANSIÓN
dd/mm/aa		h	dial	mm	%	dial	mm	%	dial	mm	%
10/03/22	15:30	0	0.0			0.0			0.0		
11/03/22	15:30	24	129.0	1.29	1.02	142.0	1.42	1.12	159.0	1.59	1.25
12/03/22	15:30	48	154.0	1.54	1.21	168.0	1.68	1.32	192.0	1.92	1.51
13/03/22	15:30	72	171.0	1.71	1.35	470.0	4.70	4.44	O AE O	2.45	
	15:30				1.00	179.0	1.79	1.41	245.0	2.40	1.93
14/03/22	10:30	96	203.0	2.03	1.60	179.0 225.0	2.25	1.77	269.0	2.69	1.93 2.12
14/03/22	15:30	96	203.0	2.03	1.60						
		96 Carga		2.03 MOLDE	1.60 C	225.0		1.77	269.0		2.12
	CIÓN (x10 ¹)			MOLDE	1.60 C	225.0	2.25	1.77	269.0	2.69 OLDE N	2.12
		Carga		MOLDE	1.60 CI N° 1	225.0 BR	2.25 MOLDE N°	1.77	269.0 M	2.69 OLDE N	2.12
PENETRA	CIÓN (x10 ¹)	Carga Estándar	Lectura	MOLDE I	1.60 Ci N° 1 priección	225.0 BR Lectura	2.25 MOLDE N°	1.77 2 odión	269.0 M Lectura	2.69 OLDE N	2.12 3 orrección
PENETRA	CIÓN (x10 ¹)	Carga Estándar	Lectura	MOLDE I	1.60 CI N° 1 Imección Kg/cm2	225.0 BR Lectura	2.25 MOLDE N°: Corre	1.77 2 cción Kg/cm2	269.0 M Lectura	2.69 OLDE N C Kg	2.12 3 arrección Kg/cm2
PENETRA mm 0.635	CIÓN (x10 ¹) pulg 0.025	Carga Estándar	Lectura dial	MOLDE I Co Kg 14	1.60 CI N° 1 Imección Kg/cm2 0.7	225.0 BR Lectura dial	2.25 MOLDE N°: Corre Kg 10	1.77 2 oción Kg/cm2 0.5	269.0 M Lectura dial	2.69 OLDE N C Kg 7	2.12 7 3 orrección Kg/cm/2 0.3
mm 0.635 1.270	CIÓN (x10 ⁴) pulg 0.025 0.050	Carga Estándar	Lectura dial 14 28	MOLDE I Co Kg 14 28	1.60 Cl N° 1 cmección Kg/cm2 0.7	225.0 BR Lectura dial 10	2.25 MOLDE N° Corre Kg 10 19	1.77 2 cción Kg/cm2 0.5 0.9	269.0 M Lectura dial 7	2.69 OLDE N C Kg 7 12	2.12 3 orrección Kg/cm2 0.3 0.6
PENETRA mm 0.635 1.270 1.905	Dión (x10 ¹) pulg 0.025 0.050 0.075	Carga Estándar Kg/cm2	Lectura dial 14 28 60	MOLDE 1 Co Kg 14 28 60	1.60 CI N° 1 crrección Kg/cm2 0.7 1.4 3.0	225.0 BR Lectura dial 10 19 39	2.25 MOLDE N° Corre Kg 10 19 39	1.77 2 cción Kg/cm2 0.5 0.9 1.9	269.0 M Lectura dial 7 12 20	2.69 OLDE N C Kg 7 12 20	2.12 3 orrección Kg/cm2 0.3 0.6 1.0
PENETRA mm 0.635 1.270 1.905 2.540	pulg 0.025 0.050 0.075 0.100	Carga Estándar Kg/cm2	Lectura dial 14 28 60 105	MOLDE 1 Kg 14 28 60 105	1.60 Ci N° 1 Interesción Kg/cm2 0.7 1.4 3.0	225.0 BR Lectura dial 10 19 39 75	2.25 MOLDE N° Correc Kg 10 19 39 75	1.77 2 oción Kg/cm2 0.5 0.9 1.9 3.7	269.0 M Lectura dial 7 12 20 64	2.69 NOLDE N' C Kg 7 12 20 64	2.12 2.3 corrección Kg/cm2 0.3 0.6 1.0 3.2
PENETRA mm 0.635 1.270 1.905 2.540 3.810	pulg 0.025 0.050 0.075 0.100 0.150	Carga Estándar Kg/cm2 70.31	Lectura dial 14 28 60 105 200	MOLDE I Co Kg 14 28 60 105 200	1.60 Ci N° 1 Interesción Kg/cm2 0.7 1.4 3.0 5.2 9.9	225.0 BR Lectura dial 10 19 39 75 132	2.25 MOLDE N° Corre Kg 10 19 39 75 132	1.77 2 colón Kg/cm2 0.5 0.9 1.9 3.7 6.5	269.0 M Lectura dial 7 12 20 64 102	2.69 MOLDE N C Kg 7 12 20 64 102	2.12 3 orrección Kg/cm2 0.3 0.6 1.0 3.2 5.0
mm 0.635 1.270 1.905 2.540 3.810 5.080	pulg 0.025 0.050 0.075 0.100 0.150 0.200	Carga Estándar Kg/cm2 70.31	Lectura dial 14 28 60 105 200 221	MOLDE I Co Kg 14 28 60 105 200 221	1.60 Ci N° 1 Immedión Kg/cm2 0.7 1.4 3.0 5.2 9.9	225.0 BR Lectura dial 10 19 39 75 132 180	2.25 MOLDE N° Corre Kg 10 19 39 75 132 180	1.77 2 cción Kg/cm2 0.5 0.9 1.9 3.7 6.5	269.0 M Lectura dial 7 12 20 64 102 140	2.69 OLDE N C Kg 7 12 20 64 102 140	2.12 3 orrección Kg/cm2 0.3 0.6 1.0 3.2 5.0 6.9
mm 0.635 1.270 1.905 2.540 3.810 5.080 6.350	Dión (x10 ⁴) pulg 0.025 0.050 0.075 0.100 0.150 0.200 0.250	Carga Estándar Kg/cm2 70.31	Lectura dial 14 28 60 105 200 221 296	MOLDE I Co Kg 14 28 60 105 200 221 296	1.60 Ci N° 1 mección Kg/cm2 0.7 1.4 3.0 5.2 9.9 10.9 14.6	225.0 BR Lectura dial 10 19 39 75 132 180 240	2.25 MOLDE N° Come Kg 10 19 39 75 132 180 240	1.77 2 oción Kg/cm2 0.5 0.9 1.9 3.7 6.5 8.9	269.0 Lectura dial 7 12 20 64 102 140 213	2.69 OLDE N C Kg 7 12 20 64 102 140 213	2.12 7 3 orrección Kglcm2 0.3 0.6 1.0 3.2 5.0 6.9 10.5

MUESTRA

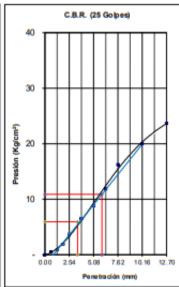
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

email: chalinger@hotmail.es Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26

octubre-Piura


APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE Nº REG. PROYECTO C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

DEPARTAMENTO DE PIURA.


CJK 5 - 139 TÉCNICO CHALINGER O. WILMER CORDOVA ING. RESP.

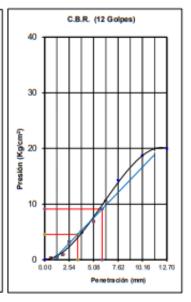
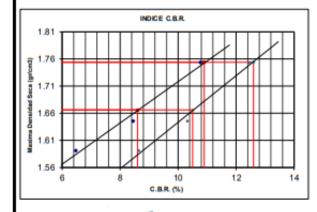

FECHA DE MUESTREO 10/03/22 FECHA DE ENSAYO 14/03/22

GRÁFICO PENETRACIÓN DE CBR

11



CBR 0.1" (%)= 10.8 CBR 02" (%)= 12.5 1.754 Densidad Seca (gr/cc):

CBR 0.1* (%)= 8.4 CBR 0.2" (%)= 10.3 Densidad Seca (gr/cc) : 1.646 CBR 0.1" (%)= 6.5 CBR 0.2" (%)= 8.6 Densidad Seca (gr/cc): 1.592

DETERMINACIÓN DEL CBR

Datos de Proctor:								
Densidad Seca 100%	1.754	gr/cm3						
Óptimo Humedad	10.20	%						
Densidad Seca 95%	1.666	gr/cm3						

C.B.R. (95% M.D.S.) 0.1":	8.6
C.B.R. (100% M.D.S.) 0.1":	10.9
C.B.R. (95% M.D.S.) 0.2":	10.5
C.B.R. (100% M.D.S.) 0.2":	12.6

Chalinger Obiegon Flore. Técnice de Laboratorio de Suelos

INFORME DE ENSAYOS - CALICATA 12

LABORATORIO DE SUELOS Y PAVIMENTOS CJK **OBRAS CIVILES - PROYECTOS Y SUPERVISION**

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992220059 / 969678249 / 954983589

RUC 20607134520

Dirección: calle Javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Plura

REGISTRO DE EXCAVACION

NORMA TECNICA: ASTM D 2488

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARAFINES DE MEJORAMENTO APLICANDO EL SISTEMA CONSOUD EN EL TRAMO ENTRE EL C.P. BATANES A.C.P. SAN PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PURA.

TRAMO : CARRETERA BATANES A SAN PEDRO CANTERA

::CAUCATA12 MATERIAL

UBICACIÓN :: KM 10+500 FECHA DE MUESTREO : 31/01/2022

TEC. LABORATORIO: CHALINGER O.F. ING. RESPONSABLE: WILWER CORDOVA.

FECHA DE ENSAYO: 0602/2022

Nº DE REGISTRO: CJK002-140

DATOS DE LAMUESTRA

CALICATA : C-12 MUESTRA PROF. (m)

OBRA

COORDENADAS

REGISTRO DE EXCAVACION DE CALICATAS

			ESTRATO		CLASI	E.	QF	UNULOMET	N A	LIMTES			
PROF.	M.	GRAFICO	Espesor (CM)	CARACTERISTICAS GEOTECNICAS	AASHTO	SUCS	5 A 0.4	Nra. 4 8 Nra. 200	Menor Nro. 200	4	D.	LR	HUM. NAT.
0.00 0.20 0.40 0.60 1.00 1.20 1.40 1.60 2.00 2.20 2.40 2.50 3.00		ML.	1.8	De 0.00 a 0.50 mt se encontro un suelo contaminado com gravay materia organica usado como capa de rodadura en la actualidad. De 0.50 a 1.5 mt se encuentra el suelo natural CH; arcilla de alta plasticidad con material variab le de alta plastica, con humedad de 10.1% con cementación de moderada a alta, que representa el 12.4% del suelo; Finos que representa el 87.6% del suelo. El estrato es de estructura homogenea, de compacidad alta, de color marron claro.	A-7-6 2(0)	₹	00	12.4	87.6	59.6	26.0	33.6	10.1

Chalifuger Obirgion Flore. Thurice de Laboratorio de Sustan

TECNICO LABORATORIO

ING. RESPONSABLE

LABORATORIO DE SUELOS Y PAVIMENTOS CJK

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 358 9

RUC 20607134520

Dirección: calle Javier prado mz b'13 it 27 A.H. San Martin.26 octubre- Piura

ANALISIS GRANULOMETRICO POR TAMIZADO

NORMAS TECNICAS: MTC E-107, E-204, E-108 - ASTM D-422 Y AASHTO T-88

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO

EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO,PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO

CANTERA

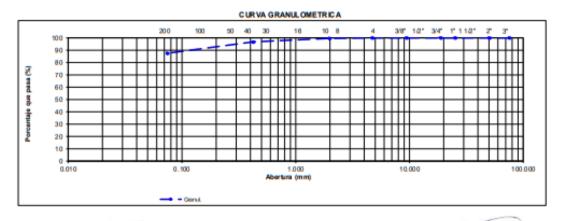
DESCRIPCION: CALICATA 12 UB. M UESTR /: KM 10+500

PROYECTO

FECHADE MUESTREO: 3 1/01/2022 TEC.LABORATORIO: CHALNGER O.F ING.RESPONSABLE: WILMER CORDOVA. FECHA DE ENSAYO: 06/02/2022

Nº DEREGISTRO: CJK002-140

DATOS DE LAMUESTRA


 CALICATA
 : C-12
 TAMAÑO MAXIM O

 MUESTRA
 : N° 01
 Peso inicial seco :
 327.1

 PROF. (m)
 : 1.5
 Fraccion Fina
 327.1

TOT - pag	AASHTOT-27	PESO	PORCENTAJE	RETENIDO	DODOENTA IS	ESPECIFICACION	DESCRIP	CION DE LA MU	ECTDA
TAMIZ	(mm)	RETENIDO	RETENIDO	ACUMULADO		ESF ESF ISFORM	DESCRIPT	DON DE LA MO	EOITA
3*	76200	HEILIEUU	HEIDADO	HOUMBLADO	GOL FROM		Contenido de Humedad	MG) -	10.12
2"	50,800						Peso de la Tara (g):	1201	0.00
1 1/2"	38.100						Peso Tara+Suelo Hum.	(a):	360.2
1*	25400						Peso Tara+Suelo Sec.(327.1
3/4"	19,000						Peso del Agua (gi:		33.1
1/2"	12500						Peso del Suelo Seco (g)):	327.1
3/8"	9.500								
1/4"	6.350								
Nº 4	4.750	0.0	0.0	0.0	100.0				
Nº8	2360								
Nº 10	2000	1.3	0.4	0.4	99.6		Descripción	A 7 0/000	
Nº 16	1.190						(AASHTO):	A-7-6(20)	MALO
N° 20	0.840	2.9	0.9	13	98.7		Descripción	Annill a sin of	ta plasticidad
Nº 30	0.600						(SUCS):	Ardiade a	ta prasocraso
№ 40	0.425	6.4	2.0	3.2	96.8		OBSERVACIONES:		
Nº 50	0.300								
Nº 80	0.177						Bdoneria > 3":		0
№ 100	0.150	12.7	3.9	7.1	929		Grava 3" - Nº 4 :		0
Nº 200	0.075	17.4	5.3	124	87.6		Arena Nº4 - Nº 200 :		12
< Nº 200	FONDO	286.4	87.6	100.0			Finos < N° 200 :		87

	CARAC	TERÍSTICA FÍSICA Y QUÍMICA	DE LA MUESTRA	
Limite liquido (%)	59.6			
Limite Plastico (%)	26.0			
Indice plástico (%)	33.6			
Clasificación: SUCS.	CH			
AASHTO	A-7-6 (20)			
Cu	Cc			

Challinger Obregon Flora. Técnico de Laboratorio de Suelos TECNICO LABORATORIO

Nage Colonia Colonia Proprieta

ING. RESPONSABLE

LABORATORIO DE SUELOS Y PAVIMENTOS CJK

OBRAS CMILES - PROYECTOS Y SUPERVISION

GERENTE: CHALINGER OBREGON FLORES

email: chalinger@hotmail.es

Teléfonos: 992 220 059 / 9696 782 49 / 95 498 35 89

RUC 20607134520

Dirección: calle Javier prado mz bi13 lt 27 A.H. San Martin 26 octubre - Piura

LIMITES DE CONSISTENCIA

NORMAS TECNICAS: MTC E-110, E111, AASHTO T-89, T-90, ASTM D-4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

: ESTUDIO DE ESTABLIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A C.P. SAN PEDRO, PROVINCIA DE FECHA DE MUESTRED : 31/01/2022

MORROPON, DEPARTAMENTO DE PIURA.

TRAM O : CARRETERA BATANES A SAN PEDRO

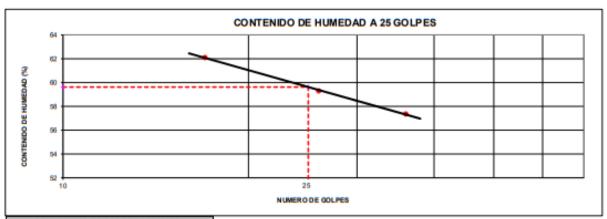
CANTERA DESCRIPCION: CAUCATA 12

UB. MUESTRA: KM 10+500

Nº DE REGISTRO : CJK003-140

ING. RESPONSABLE: WILMER CORDOVA. FECHA DE ENSAYO: 08/02/2022

TEC. LABORATORIO: CHALINGER OF


DAT				

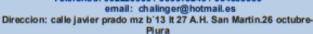
CALICATA : C-12 MUESTRA :N° 01 PROF. (m)

PROYECTO

LIMITE LIQUIDO										
Nº TARRO	1	2	3							
PESO TARRO + SUELO HUMEDO (g)	55.36	51.48	5636							
PESO TARRO + SUELO SECO (g)	39.56	36.62	38.78							
PESO DE AGUA (g)	15.80	14.86	17.58							
PESO DEL TARRO (g)	12.01	11.56	10.47							
PESO DEL SUELO SECO (g)	27.6	25.1	28.3							
CONTENIDO DE HUMEDAD (%)	57.4	59.3	62.1							
NUMERO DE GOLPES	36	26	17							

LMITE PLASTICO									
N° TARRO		1	2						
PESO TARRO + SUELO HUMEDO	(g)	22.35	24.25						
PESO TARRO + SUELO SECO	(g)	19.29	20.94						
PESO DE AGUA	(g)	3.1	3.3						
PESO DEL TARRO	(g)	7.56	8.21						
PESO DEL SUELO SECO	(g)	11.7	12.7						
CONTENIDO DE DE HUMEDAD	(%)	26.1	26.0						

CONSTANTES FISIC AS DE LA MI	CONSTANTES FISIC AS DE LA MUESTRA						
LIMITELIQUIDO	59.6						
LIMITE PLASTICO	26.0						
INDICE DE PLASTICIDAD	33.6						


Charinger Obingon Flore. Técnico de Laboratorio de Suelos TECNICO DE LABORATORIO

Action Corpova Regional Region Corpova ING. RESPONSABLE

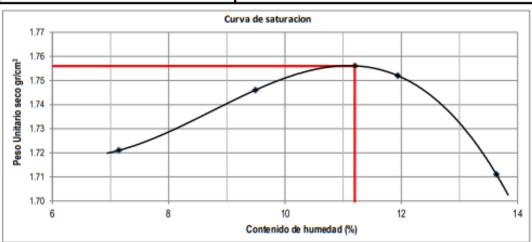
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS **OBRAS CIVILES - PROYECTOS Y SUPERVISION**

Teléfonos: 992220059 / 969678249 / 954983589

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL OBRA SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO


PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

CALICATA 12 FECHAM. 31/01/22 Nº REGISTRO CJK 4 - 140

TÉCNICO CHALINGER O. ING. RESP. WILMER CORDOVA FECHA E 10/02/2022

CHALINGER O. HECHO POR

		COMPACTA	ACIÓN .		
MÉTODO DE COMPACTACIÓ :	"A"				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5426.0	5489.0	5535.0	5520.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1715	1778	1824	1809	
VOLUMEN DEL MOLDE (cm³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ³)	1.844	1.911	1.961	1.945	
DENSIDAD SECA (gr/cm³)	1.721	1.746	1.752	1.711	
		CONTENIDO DE	HUMEDAD		
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	450.0	450.0	450.0	450.0	
PESO (SUELO SECO + TARA) (gr)	420.0	411.0	402.0	396.0	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	30.0	39.0	48.0	54.0	
PESO DE SUELO SECO (gr)	420.0	411.0	402.0	396.0	
CONTENDO DE HUMEDAD (%)	7.1	9.5	11.9	13.6	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.756	ОРТІМО СОМТ	ENIDO DE HU	MEDAD (%)	10.2

Challeger Obregon Flore. Técnice de Laboratorio de Suelos we was bounded composite Composite
Reg. Colors to Type of the Colors
Reg. Colors to Type of the Colors to Type of the Colors
Reg. Colors to Type of the Colors to Type of Type of the Colors to Type of Type o

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es

Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-Piura

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO

SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

TÉC NICO

N° REG.

CHALINGER O.

CJK 5 - 140

ING. RESP. WILMER CORDOVA 12

F. INICIO 10/02/22

14/02/22 F. FINAL

					DENSID	AD SECA						
Molde N°:				4			5			6		
N° de capas:			5				5			5		
N° de golpe	s por capa:			56			25		12			
Condición d	e la muestra:			Sumerg	ida		Sumergida	1		Sumergid	а	
			Sin Si	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado	
Peso molde	+ suelo húm	nedo	119	99	12101	11	1832	12022	11754	4	11999	
Peso del mo	olde		78	88	7888	7	945	7945	8118		8118	
Volumen de	l molde		210	4.0	2104.0	21	01.1	2101.1	2114.	1	2114.	
% de hume	dad		11.	28	14.08		11.3	16.80	11.3		18.7	
Densidad so	ca		1.7	56	1.755	1	.662	1.661	1.545		1.54	
					CONTENIDO	DE HUME	DAD					
Tarro N°												
Tarro + suel	lo húmedo		500	0.0	500.0	5	0.00	500.0	500.0)	500	
Tarro + suel	o seco		449	9.3	438.3	4	49.3	428.1	449.3	,	421.	
Peso del ag	ua		50	.7	61.7		50.7	71.9	50.7		78.	
Peso de tan	ro											
Peso del su	tel suelo seco		449	.3 438.3		449.3		428.1	449.3		421.	
% de hume	6 de humedad		11.3	3%	14.1%		11.3%		11.3%		18.79	
					EXPA	NSIÓN						
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPAN	ISIÓN	LECT.	E)	(PANSIÓN	
dd/mm/aa		h	dial	mm	%	dal	mm	%	dial	mm	%	
10/02/22	15:30	0	0.0			0.0			0.0			
11/02/22	15:30	24	129.0	1.29	1.02	142.0	1.42	1.12	159.0	1.59	1.25	
12/02/22	15:30	48	154.0	1.54	1.21	168.0	1.68	1.32	192.0	1.92	1.51	
13/02/22	15:30	72	171.0	1.71	1.35	179.0	1.79	1.41	245.0	2.45	1.93	
14/02/22	15:30	96	203.0	2.03	1.60	225.0	2.25	1.77	269.0	2.69	2.12	
						BR						
PENETRA	CIÓN (x10 ¹)	Carga		MOLDE		MOLDE N° 5		MOLDE N				
- ENETTOW	MONITATION)	Estándar	Lectura	Co	rrección	Lectura	Lectura Corrección		Lectura Cor		orrección	
mm	pulg	Kg/cm2	dal	Kg	Kg/cm2	dial	Kg	Kg/cm2	dial	Kg	Kg/cm2	
0.635	0.025		12	12	0.6	9	9	0.4	6	6	0.3	
1.270	0.050		26	26	1.3	18	18	0.9	11	11	0.5	
1.905	0.075		55	55	2.7	34	34	1.7	19	19	0.9	
2.540	0.100	70.31	95	95	4.7	72	72	3.6	51	51	2.5	
3.810	0.150		180	180	8.9	147	147	7.3	116	116	5.7	
5.080	0.200	105.46	201	201	9.9	196	196	9.7	149	149	7.4	
6.350	0.250		272	272	13.4	213	213	10.5	180	180	8.9	
7.620	0.300		350	350	17.3	303	303	14.9	270	270	13.3	
10.160	0.400		440	440	21.7	390	390	19.2	320	320	15.8	
12.700	0.500		512	512	25.3	460	460	22.7	417	417	20.6	

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

MUESTRA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS **OBRAS CIVILES - PROYECTOS Y SUPERVISION** Teléfonos: 992220059 / 969678249 / 954983589

email: chalinger@hotmail.es
Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26 octubre-Piura

ROYECTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE

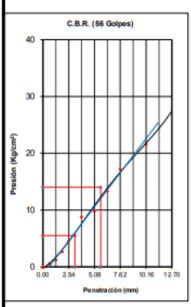
C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

DEPARTAMENTO DE PILIRA.

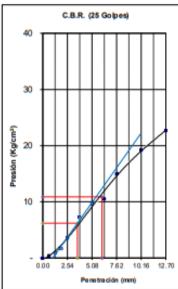
TÉCNICO

CJK 5- 140 CHALINGER O.

N° REG.


WILMER CORDOVA

FECHA DE MUESTREO 10/02/22


FECHA DE ENSAYO

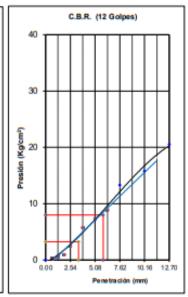
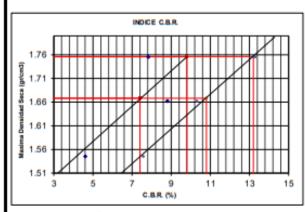

14/02/22

GRÁFICO PENETRACIÓN DE CBR


12

CBR 0.1" (%)= 7.8 CBR 02" (%)= 13.3 Densidad Seca (gr/cc): 1.756 CBR 0.1" (%)= 8.8 CBR 0.2" (%)= 10.3 Densidad Seca (gr/cc) : 1.662 CBR 0.1" (%)= 4.6 CBR 0.2" (%)= 7.6 Densidad Seca (gr/cc): 1.545

DETERMINACIÓN DEL CBR

Datos de Proctor:

Densidad Seca 100%	1.756	gr/cm3	
Óptimo Humedad	10.20	%	
Densidad Seca 95%	1.668	gr/cm3	

C.B.R. (95% M.D.S.) 0.1":	7.4
C.B.R. (100% M.D.S.) 0.1":	9.8
C.B.R. (95% M.D.S.) 0.2":	10.8
C.B.R. (100% M.D.S.) 0.2":	13.2

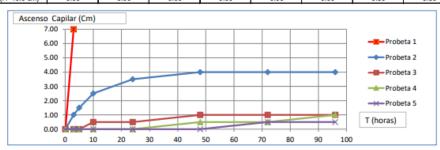
Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

ENSAYO DE CAPILARIDAD

Proyecto

Ubicación

ENSAYO DE CAPILARIDAD


: "ESTUDIO DE ESTABILIZACIÓN DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P.

BATANES A.C.P. SAN PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA*

: DISTRITO DE CHULUCANAS, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA

Tipo de suelo : MH Fecha : 21/05/2022

Probeta	5 Minutos		10	dia	2 dias	3 dias	4 dias						
(H=Altura	Horas												
Probeta)	0.083	3	5	10	24	48	72	96					
1 (H=10.0 cm)	0.00	7.00	COLAPSÓ										
2 (H=10.0 cm)	0.00	1.00	1.50	2.50	3.50	4.00	4.00	4.00					
3 (H=10.0 cm)	0.00	0.00	0.00	0.50	0.50	1.00	1.00	1.00					
4 (H=10.0 cm)	0.00	0.00	0.00	0.00	0.00	0.50	0.50	1.00					
5 (H=10.0 cm)	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.50					

Calle Francisco Grafia 390 - Magdalena del Mar - Lima - Perú Teléfono: (01) 7463104 Cel: 992194007 e-mail: jcabrejos@sistemaconsolid.com 1 de 2

2 de 2

ENSAYO DE CAPILARIDAD

: "ESTUDIO DE ESTABILIZACIÓN DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO ENTRE EL C.P. BATANES A.C.P. SAN PEDRO, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA" Proyecto

: INMOBILIARIA QUISPE S.A.C. Solicitante

Ubicación : DISTRITO DE CHULUCANAS, PROVINCIA DE MORROPON, DEPARTAMENTO DE PIURA

Tipo de suelo : MH : 21/05/2022 Fecha

Probeta 1	Material Natural 100%.
Probeta 2	Material Natural 100%, Formulación líquida 0.045% Y Formulación sólida 0.5%
Probeta 3	Material Natural 100%, Formulación líquida 0.045% y Formulación sólida 1%
Probeta 4	Material Natural 100%, Formulación líquida 0.045% y Formulación sólida 1.5%
Probeta 5	Material Natural 100%, Formulación líquida 0.045% y Formulación sólida 2%

CONCLUSIONES

La Probeta 1 con 100% de material nativo, colapsó en menos de 4 horas.

Las Probetas 2 tiene un ascenso capilar de 4cm, la cual se mantiene estable.

Las Probetas 3, 4 y 5 presentan buena estabilidad y buen control de ascenso capilar.

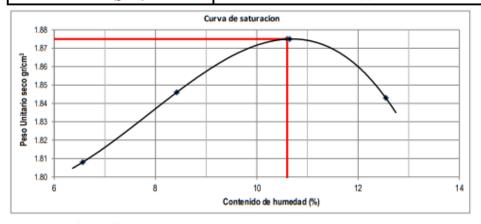
Calle Francisco Graña 390 - Magdalena del Mar - Lima - Perú Teléfono: (01) 7463104 Cel: 992194007 e-mail: jcabrejos@sistemaconsolid.com

CONCLUSIONES Y RECOMENDACIONES GENERALES

• De las probetas 3, 4 y 5 podemos decir que, presentan una buena estabilidad y un buen control de ascenso capilar, teniendo como resultado un suelo practicamente impermeable. La dosificación a utilizarse dependerá de los ensayos de laboratorio correspondientes.

ENSAYO PROCTOR Y CBR DE MUESTRA ESTABILIZADA CON 0.045% CONSOLID 444 (formulación líquida) +0.5% SOLIDRY (formulación sólida).

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS
OBRAS CIVILES – PROYECTOS Y SUPERVISION
Teléfonos: 992220059 / 969678249 / 954983589
email: chalinger@hotmail.es
Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubrePiura



LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMENTO APLICANDO EL OBRA Nº REGISTRO CJK 4 - 144 SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA. TÉCNICO CHALINGER O. ING. RESP. WILMER CORDOVA CALICATA 1 FECHAM. 30/01/22 FECHA E 29/05/2022 HECHO POR CHALINGER O.

COMPACTACIÓN MÉTODO DE COMPACTACIÓ N° DE GOLPES POR CAPA 25 NUMERO DE CAPAS 5 NÚMERO DE ENSAYO 2 PESO (SUELO + MOLDE) (gr) 5503.0 5573.0 5641.0 5640.0 PESO DE MOLDE (gr) 3711.0 3711.0 3711.0 3711.0 PESO SUELO HÚMEDO (gr) 1792 1862 1930 1929 VOLUMEN DEL MOLDE (cm² 930.2 930.2 930.2 930.2 DENSIDAD HÚMEDA (gr/cm³) 1.926 2.002 2.075 2.074 DENSIDAD SECA (gr/cm3) 1.808 1.846 1.875 1.843 CONTENIDO DE HUMEDAD RECIPIENTE Nº PESO (SUELO HÚMEDO + TARA) (gr) 306.9 307.8 352.3 326.5 PESO (SUELO SECO + TARA) (gr) 290.1 288.0 283.9 318.4 PESO DE LA TARA (gr) 0.0 0.0 0.0 0.0 PESO DE AGUA (gr) 18.9 23.9 33.9 36.4 PESO DE SUELO SECO (gr) 283.9 290.1 288.0 318.4 CONTENIDO DE HUMEDAD (%) 6.6 8.4 10.6 12.5 MÁXIMA DENSIDAD SECA (gr/cm³) ÓPTIMO CONTENIDO DE HUMEDAD (%) 10.6 1.875

Chalibeger Obregon Flore. Tecnico de Laboratorio de Suelos

PROYECTO

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES – PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b'13 It 27 A.H. San Martin.26 octubre-

Piura

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROVINCIA DE MORROPON DEPARTAMENTO DE PURA.

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMENTO APLICANDO EL

N° REG. CJK 5 - 144 TÉCNICO CHALINGER O.

WILMER CORDOVA ING. RESP.

F. INICIO 29/05/22 02/06/22 F. FINAL

					DENSID	AD SECA					
Molde N°:				01			2			3	
N° de capas:			5			5			5		
N° de golpe	s por capa:			56			25		12		
	e la muestra			Sumerg	ida		Sumergida			Sumergid	а
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado
Peso molde	+ suelo húm	nedo	126	04	12719	1:	2304	12504	11870	0	1210
Peso del mo	olde		824	45	8245	8	1145	8145	7900		790
Volumen de	el molde		210	4.9	2104.9	2	111.3	2111.3	2114.	0	2114
% de hume	dad		10.	74	13.52		10.6	15.94	10.6		17.1
Densidad se	eca		1.8	70	1.872	1	.780	1.781	1.698	l .	1.69
					CONTENIDO	DE HUME	DAD				
Tarro N°											
Tarro + suel	lo húmedo		300).1	350.2	3	00.5	350.6	300.7	'	355
Tarro + suel	lo seco		271	1.0	308.5	2	71.6	302.4	271.9)	303
Peso del ag	ua		29	.1	41.7	28.9		48.2	28.8		52
Peso de tan	ro										
Peso del su	elo seco		271	1.0	308.5	2	71.6	302.4	271.9		303
% de hume	dad		10.7	7%	13.5%	10.6%		15.9%	10.6%		17.1
					EXPA	NSIÓN					
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPA	NSIÓN	LECT.	E)	PANSIÓN
dd/mm/aa		h	dial	mm	%	dial	mm	%	dial	mm	%
29/05/22	15:30	0	0.0			0.0			0.0		
30/05/22	15:30	24	172.0	1.72	1.35	179.0	1.79	1.41	186.0	1.86	1.46
31/05/22	15:30	48	198.0	1.98	1.56	200.0	2.00	1.57	210.0	2.10	1.65
01/06/22	15:30	72	203.0	2.03	1.60	215.0	2.15	1.69	226.0	2.26	1.78
02/06/22	15:30	96	208.0	2.08	1.64	223.0	2.23	1.76	234.0	2.34	1.84
						BR					
PENETRAC	CIÓN (x10 ¹)	Carga		MOLDE N		MOLDE N° 2				3	
		Estándar	Lectura		rrección	Lectura					arrección
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	dal	Kg	Kg/cm2	dial	Kg	Kg/cm2
0.635	0.025		15	15	0.7	9	9	0.4	7	7	0.3
1.270	0.050		43	43	2.1	29	29	1.4	26	26	1.3
1.905	0.075		81	81	4.0	62	62	3.1	50	50	2.5
2.540	0.100	70.31	125	125	6.2	98	98	4.8	79	79	3.9
3.810	0.150		244	244	12.0	194	194	9.6	136	136	6.7
5.080	0.200	105.46	283	283	14.0	256	256	12.6	189	189	9.3
6.350	0.250		331	331	16.3	299	299	14.8	246	246	12.1
7.620	0.300		373	373	18.4	348	348	17.2	289	289	14.3
10.160	0.400		427	427	21.1	401	401	19.8	349	349	17.2
12.700	0.500		482	482	23.8	436	436	21.5	368	368	18.2

Chalinger Obregon Flore. Técnico de Laboratorio de Sueios Will John Orbital Di Composit A C

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

ema il: chalinger@hotmail.es Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26

octubre-Piura

PROYECTO

MUESTRA

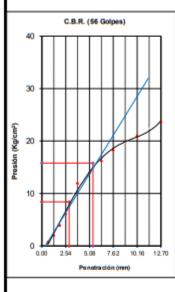
APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P.SAN PEDRO PROVINCIA DE MORROPON

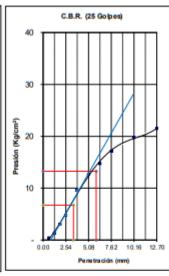
N° REG.

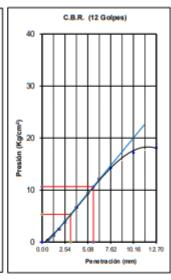
CJK 5- 144

DEPARTAMENTO DE PILIRA

TÉCNICO

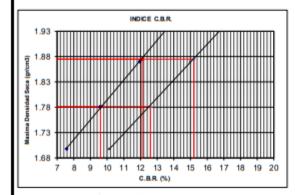

CHALINGER O. WILMER CORDOVA


ING. RESP.


FECHA DE MUESTREO 29/05/22

FECHA DE ENSAYO

GRÁFICO PENETRACIÓN DE CBR



CBR 0.1" (%)= CBR 02" (%)= Densidad Seca (gr/cc): 12.0 15.0 1.870 CBR 0.1" (%)= CBR 0.2" (%)= Densidad Seca (gr/cc) :

9.6 12.6 1.780 CBR 0.1° (%)= 7.6 CBR 0.2" (%)= 10.1 Densidad Seca (gr/cc): 1.698

DETERMINACIÓN DEL CBR

Densidad Seca 100%	1.875	gr/cm3		
Óptimo Humedad	10.60	%		
Densidad Seca 95%	1.781	gr/cm3		

C.B.R (95% M.D.S.) 0.1":	9.6
C.B.R. (100% M.D.S.) 0.1":	12.1
C.B.R. (95% M.D.S.) 0.2":	12.6
C.B.R. (100% M.D.S.) 0.2":	15.2

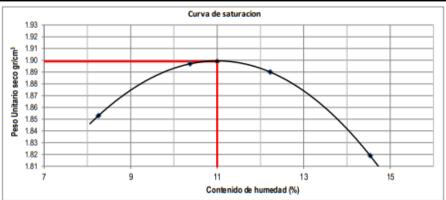
Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

ENSAYO PROCTOR Y CBR DE MUESTRA ESTABILIZADA CON 0.045% CONSOLID 444 (formulación líquida) +1.0% SOLIDRY (formulación sólida).

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS
OBRAS CIVILES – PROYECTOS Y SUPERVISION
Teléfonos: 992220059 / 969678249 / 954983589
email: chalinger@hotmail.es
Direccion: calle javier prado mz b '13 lt 27 A.H. San Martin.26 octubrePiura

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D


OBRA ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

CALICATA 1
FECHAM. 30/01/22

Nº REGISTRO CJK 4 - 145

TÉCNICO CHAL INGER O.
ING. RESP. WILMER CORDOVA
FECHA E 29/05/2022
HECHO POR CHAL INGER O.

		COMPACTA	ACIÓN		
MÉTODO DE COMPACTACIÓ :	-A-				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5577.0	5659.0	5684.0	5649.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1866	1948	1973	1938	
VOLUMEN DEL MOLDE (cm³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ⁵)	2.006	2.094	2.121	2.083	
DENSIDAD SECA (gr/cm³)	1.853	1.897	1.890	1.819	
		CONTENIDO DE	HUMEDAD		
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	318.6	249.0	321.3	315.2	
PESO (SUELO SECO + TARA) (gr)	294.3	225.6	286.3	275.2	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	24.3	23.4	35.0	40.0	
PESO DE SUELO SECO (gr)	294.3	225.6	286.3	275.2	
CONTENIDO DE HUMEDAD (%)	8.3	10.4	12.2	14.5	
MÁXIMA DENSIDAD SECA (gr/cm³)	ОРТІМО CONT	ENIDO DE HU	11.0		

Chalinger Obregon Flore. Técnico de Laboratorio de Suelos

1

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b´13 lt 27 A.H. San Martin.26 octubre-

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

N° REG. CJK 5 - 145 TÉC NICO CHALINGER O.

WILMER CORDOVA ING. RESP.

29/05/22 F. INICIO 02/06/22 F. FINAL

					DENSID	AD SECA						
Molde N°:				4			5			6		
N° de capas:			5				5			5		
N° de galpe	s por capa:		56				25		12			
Condición d	e la muestra	:		Sumerg	ida		Sumergida			Sumergid	а	
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	rar	Saturado	
Peso molde	+ suelo húm	nedo	124	05	12532	1:	2146	12331	12276	3	12506	
Peso del mo	olde		79	49	7949	7	945	7945	8300		8300	
Volumen de	l molde		211	4.0	2114.0	21	101.1	2101.1	2094.	7	2094.7	
% de hume	dad		11.	03	13.60		11.0	15.82	11.0		17.6	
Densidad so	ca		1.8	98	1.908	1	.801	1.802	1.709)	1.70	
					CONTENIDO	DE HUME	DAD					
Tarro N°												
Tarro + suel	o húmedo		350).3	369.3	3	50.1	305.3	300.5		320.6	
Tarro + suel	0 9800		315	5.5	325.1	3	15.4	263.6	270.6		272.6	
Peso del ag	ua		34	.8	44.2		34.7	41.7	29.9		48.0	
Peso de tan	ro											
Peso del su	elo seco		315	5.5	325.1	315.4		263.6	270.6		272.6	
% de hume	dad)%	13.6%	11.0%		15.8%	11.0%		17.6%	
					EXPA	NSIÓN						
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPAN	NSIÓN	LECT.	E)	PANSIÓN	
dd/mm/aa		h	dial	mm	%	dial	mm	%	dial	mm	%	
29/05/22	15:30	0	0.0			0.0			0.0			
30/05/22	15:30	24	170.0	1.70	1.34	176.0	1.76	1.39	186.0	1.86	1.46	
31/05/22	15:30	48	182.0	1.82	1.43	189.0	1.89	1.49	198.0	1.98	1.56	
01/06/22	15:30	72	193.0	1.93	1.52	199.0	1.99	1.57	220.0	2.20	1.73	
02/06/22	15:30	96	220.0	2.20	1.73	236.0	2.36	1.86	242.0	2.42	1.91	
					C	BR						
PENETRA	OÓN (x10 ⁴)	Carga		MOLDE	N° 4	MOLDE N° 5			N	' 6		
- ENETTOW	MONITATION)	Estándar	Lectura	Co	rrección	Lectura	ctura Corrección		Lectura C		arrección	
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	da	Kg	Kg/cm2	dial	Kg	Kg/cm2	
0.635	0.025		53	53	2.6	40	40	2.0	30	30	1.5	
1.270	0.050		143	143	7.1	105	105	5.2	70	70	3.5	
1.905	0.075		256	256	12.6	210	210	10.4	151	151	7.5	
2.540	0.100	70.31	379	379	18.7	298	298	14.7	202	202	10.0	
3.810	0.150		497	497	24.5	396	396	19.5	289	289	14.3	
5.080	0.200	105.46	551	551	27.2	484	484	23.9	326	326	16.1	
6.350	0.250		587	587	29.0	540	540	26.6	400	400	19.7	
7.620	0.300		623	623	30.7	592	592	29.2	449	449	22.2	
10.160	0.400		684	684	33.7	629	629	31.0	482	482	23.8	
12.700	0.500		769	769	37.9	648	648	32.0	501	501	24.7	

Chalinger Obregon Flore. Técrico de Laboratorio de Suelos was to bring the common a composite to the control of the composite to the control of the contro

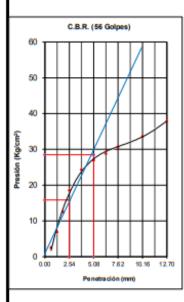
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b '13 lt 27 A.H. San Martin.26

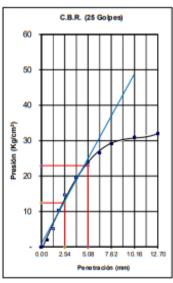
octubre-Piura

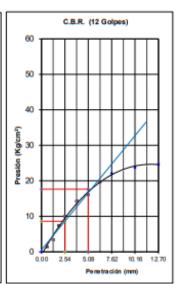
ROYECTO

MUESTRA

APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

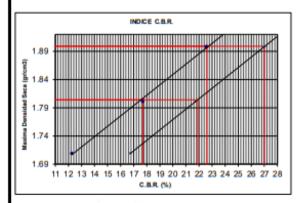

DEPARTAMENTO DE PIURA.


N° REG. CJK 5- 145 TÉCNICO CHALINGER O.


WILMER CORDOVA

FECHA DE MUESTREO 29/05/22 FECHA DE ENSAYO 02/06/22

GRÁFICO PENETRACIÓN DE CBR



CBR 0.1" (%)= CBR 0.2" (%)= Densidad Seca (gr/cc): CBR 0.1" (%)= CBR 0.2" (%)= Densidad Seca (gr/cc) : 17.7 21.8 1.801 CBR 0.1" (%)= 12.3 CBR 0.2" (%)= 16.8 Densidad Seca (gr/cc) : 1.709

DETERMINACIÓN DEL CBR

22.6

27.0

1.898

Datos de Proctor:

Densidad Seca 100%	1.899	gr/cm3
Óptimo Humedad	11.00	%
Densidad Seca 95%	1.804	gr/cm3

C.B.R. (95% M.D.S.) 0.1":	17.7
C.B.R. (100% M.D.S.) 0.1":	22.6
C.B.R. (100% M.D.S.) 0.1": C.B.R. (95% M.D.S.) 0.2":	21.9
C.B.R. (100% M.D.S.) 0.2":	27.0

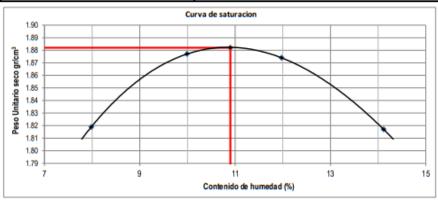
Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

ENSAYO PROCTOR Y CBR DE MUESTRA ESTABILIZADA CON 0.045% CONSOLID 444 (formulación líquida) +1.5% SOLIDRY (formulación sólida).

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS
OBRAS CIVILES - PROYECTOS Y SUPERVISION
Teléfonos: 992220059 / 969678249 / 954983589
email: chalinger@hotmail.es
Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26 octubre-

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D


ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL OBRA SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

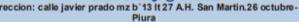
CALICATA FECHAM. 30/01/22

Nº REGISTRO CJK 4 - 146 TÉCNICO CHALINGER O. ING. RESP. FECHA E 30/05/2022

WILMER CORDOVA CHALINGER O. HECHO POR

		COMPACTA	ACIÓN			
MÉTODO DE COMPACTACIÓ :	"A"					
N° DE GOLPES POR CAPA :	25					
NUMERO DE CAPAS :	5					
NÚMERO DE ENSAYO	1	2	3	4		
PESO (SUELO + MOLDE) (gr)	5538.0	5631.0	5663.0	5640.0		
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0		
PESO SUELO HÚMEDO (gr)	1827	1920	1952	1929		
VOLUMEN DEL MOLDE (cm ³)	930.2	930.2	930.2	930.2		
DENSIDAD HÚMEDA (gr/cm ³)	1.964	2.064	2.098	2.074		
DENSIDAD SECA (gr/cm³)	1.819	1.877	1.874	1.817		
		CONTENIDO DE	HUMEDAD			
RECIPIENTE N°						
PESO (SUELO HÚMEDO + TARA) (gr)	223.2	220.2	225.4	231.2		
PESO (SUELO SECO + TARA) (gr)	206.7	200.2	201.3	202.6		
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0		
PESO DE AGUA (gr)	16.5	20.0	24.1	28.6		
PESO DE SUELO SECO (gr)	206.7	200.2	201.3	202.6		
CONTENIDO DE HUMEDAD (%)	8.0	10.0	12.0	14.1		
MÁXIMA DENSIDAD SECA (gr/cm³)	1.882	ÓPTIMO CONTENIDO DE HUMEDAD (%) 10.9				

Chalinger Obregon Flore. Tranice de Laboratorio de Suelos



1

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26 octubre-

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL PROYECTO SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P SAN PEDRO

PROVINCIA DE MORROPON DEPARTAMENTO DE PIURA.

N° REG. CJK 5 - 146 TÉCNICO

CHALINGER O.

WILMER CORDOVA ING. RESP. 30/05/22 F. INICIO

03/06/22 F. FINAL

					DENSID	AD SECA						
Molde N°:				7		8			9	9		
N° de capas	3:			5			5					
N° de galpe	s por capa:			56		25 12						
Condición d	e la muestra:			Sumerg	ida	Sumergida Sumergida			la			
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Satu	Sin Saturar		
Peso molde	+ suelo húm	nedo	125	94	12695	12	2353	12516	12232	2	1246	
Peso del mo	olde		810	61	8161	8	165	8165	8300		830	
Volumen de	l molde		212	3.1	2123.1	21	114.0	2114.0	2094.	7	2094	
% de hume	dad		10.	88	13.50	•	10.8	15.25	10.8		17.5	
Densidad so	ca		1.8	83	1.882	1	.787	1.786	1.694		1.69	
					CONTENIDO	DE HUME	DAD					
Tarro N°												
Tarro + suel	o húmedo		300).6	350.6	3	00.4	302.3	300.7		350	
Tarro + suel	o seco		271		308.9		71.0	262.3	271.4	,	298	
Peso del ag	ua		29	.5	41.7	- 2	29.4	40.0	29.3		52	
Peso de tan	ro											
Peso del su	elo seco		271	1.1	308.9	2	71.0	262.3	271.4		298	
% de hume	dad		10.9	9%	13.5%	10	0.8%	15.2%	10.8%	i	17.5	
						NSIÓN						
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPAN	ISIÓN	LECT.	E	(PANSIÓN	
dd/mm/aa		h	dial	mm	%	dal	mm	%	dial	mm	%	
30/05/22	15:30	0	0.0			0.0			0.0			
31/05/22	15:30	24	165.0	1.65	1.30	173.0	1.73	1.36	179.0	1.79	1.41	
01/06/22	15:30	48	172.0	1.72	1.35	181.0	1.81	1.43	186.0	1.86	1.46	
02/06/22	15:30	72	189.0	1.89	1.49	195.0	1.95	1.54	199.0	1.99	1.57	
03/06/22	15:30	96	203.0	2.03	1.60	213.0	2.13	1.68	215.0	2.15	1.69	
						BR						
PENETRAC	DIÓN (x10 ⁴)	Carga		MOLDE			MOLDE N°				MOLDE N° 9	
	,	Estándar	Lectura	_	rrección	Lectura	Соте		Lectura	_	arrección	
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	dal	Kg	Kg/cm2	dial	Kg	Kg/cm2	
0.635	0.025		20	20	1.0	18	18	0.9	16	16	0.8	
1.270	0.050		107	107	5.3	94	94	4.6	84	84	4.1	
1.905	0.075		268	268	13.2	210	210	10.4	192	192	9.5	
2.540	0.100	70.31	403	403	19.9	340	340	16.8	256	256	12.6	
3.810	0.150		468	468	23.1	400	400	19.7	294	294	14.5	
5.080	0.200	105.46	500	500	24.7	436	436	21.5	325	325	16.0	
6.350	0.250		560	560	27.6	486	486	24.0	370	370	18.3	
7.620	0.300		600	600	29.6	500	500	24.7	410	410	20.2	
10.160	0.400		653	653	32.2	523	523	25.8	436	436	21.5	
12.700	0.500		675	675	33.3	553	553	27.3	458	458	22.6	

Chalinger Obregon Flore. Técnico de Laboratorio de Sueios the vice objection control a control

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589

ema il: chalinger@hotmail.es Direccion: calle javier prado mz b'13 lt 27 A.H. San Martin.26

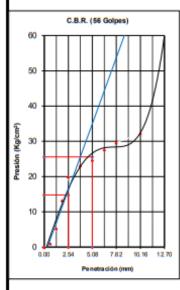
octubre - Piura

ROYECTO

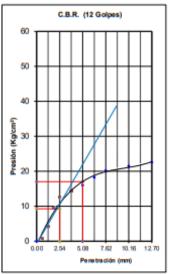
APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE Nº REG.

C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

DEPARTAMENTO DE PIURA.

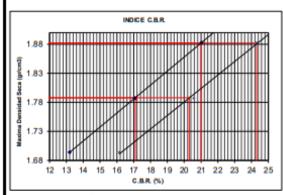

MUESTRA

CJK 5- 146 TÉCNICO CHALINGER O.


WILMER CORDOVA ING. RESP.

FECHA DE MUESTREO 30/05/22 FECHA DE ENSAYO 03/06/22

GRÁFICO PENETRACIÓN DE CBR



CBR 0.1" (%)= 21.0 CBR 02" (%)= 24.3 Densidad Seca (gr/cc): 1.883 CBR 0.1" (%)= 17.1 CBR 0.2" (%)= 20.6 Densidad Seca (gr/cc) : 1.787

CBR 0.1" (%)= 13.2 CBR 0.2" (%)= 16.1 Densidad Seca (gr/cc): 1.694

DETERMINACIÓN DEL CBR

Datos de Prodor.						
Densidad Seca 100%	1.882	gr/cm3				
Óptimo Humedad	10.90	%				
Densidad Seca 95%	1.788	gr/cm3				

C.B.R. (95% M.D.S.) 0.1":	17.1
C.B.R. (100% M.D.S.) 0.1":	21.0 20.3
C.B.R. (95% M.D.S.) 0.2":	20.3
C.B.R. (100% M.D.S.) 0.2":	24.3

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos

Datos de Proctor:

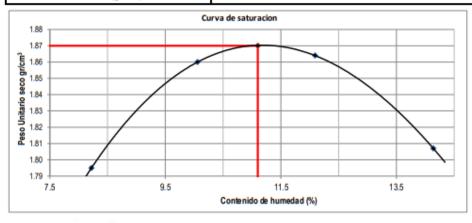
ENSAYO PROCTOR Y CBR DE MUESTRA ESTABILIZADA CON 0.045% CONSOLID 444 (formulación líquida) +2.0% SOLIDRY (formulación sólida).

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS
OBRAS CIVILES – PROYECTOS Y SUPERVISION
Teléfonos: 992220059 / 969678249 / 954983589
email: chalinger@hotmail.es
Direccion: calle javier prado mz b'13 ft 27 A.H. San Martin.26 octubrePiura

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

ENSAYO DE PROCTOR MODIFICADO MTC E 115 - ASTM D 1557 - AASHTO T-180 D

OBRA ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMIENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y CP SAN PEDRO TÉCNICO CHALINGER O.


CALICATA 1

FECHAM. 30/01/22

FECHA E 30/05/2022

HECHO POR CHALINGER O.

·		COMPACTA	ACIÓN .		
MÉTODO DE COMPACTACIÓ :	-A-				
N° DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3		
PESO (SUELO + MOLDE) (gr)	5518.0	5615.0	5655.0	5630.0	
PESO DE MOLDE (gr)	3711.0	3711.0	3711.0	3711.0	
PESO SUELO HÚMEDO (gr)	1807	1904	1944	1919	
VOLUMEN DEL MOLDE (cm³)	930.2	930.2	930.2	930.2	
DENSIDAD HÚMEDA (gr/cm ³)	1.943	2.047	2.090	2.063	
DENSIDAD SECA (gr/cm ³)	1.795	1.860	1.864	1.807	
		CONTENIDO DE	HUMEDAD		•
RECIPIENTE N°					
PESO (SUELO HÚMEDO + TARA) (gr)	350.2	346.9	352.3	356.8	
PESO (SUELO SECO + TARA) (gr)	323.6	315.2	314.3	312.6	
PESO DE LA TARA (gr)	0.0	0.0	0.0	0.0	
PESO DE AGUA (gr)	26.6	31.7	38.0	44.2	
PESO DE SUELO SECO (gr)	323.6	315.2	314.3	312.6	
CONTENIDO DE HUMEDAD (%)	8.2	10.1	12.1	14.1	
MÁXIMA DENSIDAD SECA (gr/cm³)	1.870	ÓPTIMO CONTENIDO DE HUMEDAD (%) 11.1			

Chaîtinger Obregon Flore. Técnico de Laboratorio de Suelos Page Cologo Colo

1

CALICATA

SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26 octubre-

Piura

ENSAYO DE CBR

MTC E 132 ASTM D-1883 AASHTO T-193

ESTUDIO DE ESTABILIZACION DE SUELOS PARA FINES DE MEJORAMENTO APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE C.P. BATANES Y C.P. SAN PEDRO PROYECTO

PROVINCIA DE MORROPON DEPARTAMENTO DE PIJRA.

N° REG.

CJK 5 - 147

CHALINGER O. **TÉCNICO**

WILMER CORDOVA

30/05/22 F. INICIO 03/06/22 F. FINAL

ING. RESP.

					DENSID	AD SECA						
Molde N°:				10		11			12			
N° de capa	6:			5		5 5						
N° de galpe	es por capa:			56		25				12		
	ie la muestra	:		Surnerg	ida		Sumergida		Sumergida			
			Sin Sa	aturar	Saturado	Sin	Saturar	Saturado	Sin Saturar		Saturado	
Peso molde	e + suelo húm	nedo	124	74	12601	12	2318	12512	12101	1	1235	
Peso del m	olde		80	58	8058	8	145	8145	8118		811	
Volumen de	el molde		212	3.1	2123.1	21	11.3	2111.3	2114.1	1	2114	
% de hume	dad		11.	14	14.30	1	11.1	16.31	11.1		18.4	
Densidad s	eca		1.8	71	1.872	1.	.778	1.778	1.696		1.69	
					CONTENIDO	DE HUME	DAD					
Tarro N°												
Tarro + sue	lo húmedo		325	5.2	365.3	3:	25.4	365.9	325.4		365	
Tarro + sue	lo seco		292	2.6	319.6	2	92.8	314.6	292.9		308	
Peso del ag	gua		32	.6	45.7	3	32.6	51.3	32.5		56.	
Peso de ta	то											
Peso del su	ido seco		292	2.6	319.6	2	292.8 314.6		292.9		308	
% de hume	dad		11.1	1%	14.3%	11	1.1%	16.3%	11.1%	á	18.59	
					EXPA	NSIÓN						
FECHA	HORA	TIEMPO	LECT.	EX	PANSIÓN	LECT.	EXPAN	ISIÓN	LECT.	E)	PANSIÓN	
dd/mm/aa		h	dial	mm	%	dial	mm	%	dial	mm	%	
30/05/22	15:30	0	0.0			0.0			0.0			
31/05/22	15:30	24	146.0	1.46	1.15	153.0	1.53	1.20	163.0	1.63	1.28	
01/06/22	15:30	48	152.0	1.52	1.20	162.0	1.62	1.28	172.0	1.72	1.35	
02/06/22	15:30	72	168.0	1.68	1.32	171.0	1.71	1.35	176.0	1.76	1.39	
03/06/22	15:30	96	173.0	1.73	1.36	178.0	1.78	1.40	183.0	1.83	1.44	
					C	BR						
DENETRA	CIÓN (x10 ¹)	Carga	1	MOLDE N	√° 10		MOLDE N°	11	M	12		
PENETIV	CONT(XIO.)	Estándar	Lectura	Co	rrección	Lectura	Corre	oción	Lectura Co		arrección	
mm	pulg	Kg/cm2	dial	Kg	Kg/cm2	dal	Kg	Kg/cm2	dial	Kg	Kg/cm2	
0.635	0.025		75	75	3.7	56	56	2.8	45	45	2.2	
1.270	0.050		215	215	10.6	190	190	9.4	170	170	8.4	
1.905	0.075		398	398	19.6	310	310	15.3	226	226	11.2	
2.540	0.100	70.31	547	547	27.0	486	486	24.0	345	345	17.0	
3.810	0.150		597	597	29.5	530	530	26.1	410	410	20.2	
5.080	0.200	105.46	687	687	33.9	571	571	28.2	490	490	24.2	
6.350	0.250		712	712	35.1	646	646	31.9	542	542	26.7	
7.620	0.300		756	756	37.3	682	682	33.6	599	599	29.6	
10.160	0.400		798	798	39.4	720	720	35.5	682	682	33.6	
12.700	0.500		832	832	41.0	753	753	37.2	699	699	34.5	

Chalinger Obzegon Flore. Técnice de Laboratorio de Suelos

We with Objection Control of Cont

MUESTRA

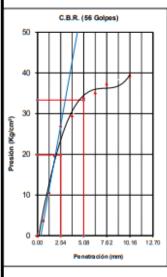
SERVICIOS GEOTECNICOS E INGENIEROS CONTRATISTAS OBRAS CIVILES - PROYECTOS Y SUPERVISION Teléfonos: 992220059 / 969678249 / 954983589 email: chalinger@hotmail.es Direccion: calle javier prado mz b 13 lt 27 A.H. San Martin.26

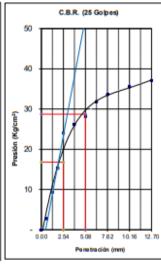
octubre - Piura

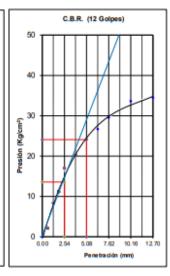
ROYECTO

APLICANDO EL SISTEMA CONSOLID EN EL TRAMO COMPRENDIDO ENTRE

C.P. BATANES Y C.P SAN PEDRO PROVINCIA DE MORROPON

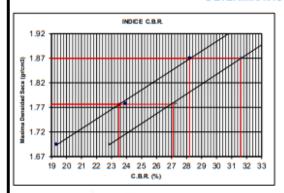

TÉCNICO DEPARTAMENTO DE PIURA


CJK 5- 147 TÉCNICO CHALINGER O.


ING. RESP. WILMER CORDOVA

FECHA DE MUESTREO 30/05/22 FECHA DE ENSAYO 03/06/22

GRÁFICO PENETRACIÓN DE CBR


CBR 0.1" (%)= 28.2 CBR 02" (%)= 31.6 Densidad Seca (gr/cc):

CBR 0.1" (%)= CBR 0.2" (%)= Densidad Seca (gr/cc) : 23.9 27.2 1.778

Dates de Drester

CBR 0.1" (%)= 19.3 CBR 0.2" (%)= 22.8 Densidad Seca (gr/cc) : 1.696

DETERMINACIÓN DEL CBR

1.871

Datos de Prodor.		
Densidad Seca 100%	1.870	gr/cm3
Óptimo Humedad	11.10	%
Densidad Seca 95%	1.777	gr/cm3

C.B.R (95% M.D.S.) 0.1":	23.5
C.B.R. (100% M.D.S.) 0.1":	28.2
C.B.R. (95% M.D.S.) 0.2":	27.1
C.B.R. (100% M.D.S.) 0.2":	31.6

Chalinger Obregon Flore. Técnice de Laboratorio de Suelos Lick Orbidato Colocola Costo Rog Cologo de Villación

FOTOS DE LA ZONA DE ESTUDIO

Figura 18. Estado del tramo Batanes – San Pedro

Nota. Elaboración propia (2022).

Figura 19. Punto final del tramo – San Pedro

1 Igura 20. Necomo de tramo de investigación

Figura 20. Recorrido de tramo de investigación

Figura 21. Excavación de calicata C01

Figura 22. Extracción de muestra C03

Figura 23. Excavación de calicata C04

Figura 24. Extracción de muestra C04

Figura 25. Excavación de calicata C06

Figura 26. Excavación de calicata C08

Figura 27. Tamizado de muestras de suelo

Service of the servic

Figura 28. Peso de muestra para ensayo granulométrico

Figura 29. Realización de ensayo de límite líquido (copa de Casagrande)

Figura 30. Adición de agua destilada para elaboración de límite plástico

Figura 31. Elaboración de barritas cilíndricas sobre superficie de vidrio

Figura 32. Tamizado de muestra para ensayo de proctor modificado

Figura 33. Adición de agua destilada para ensayo de proctor modificado

Figura 34. Ensayo de ascenso capilar del material natural – Probeta 01

Figura 35. Ensayo de ascenso capilar del material natural, probeta 02 y probeta 03

Figura 36. Ensayo de ascenso capilar del material natural, probeta 04 y probeta 05

Figura 37. Componentes de Sistema Consolid: CONSOLID 444 y SOLIDRY

Figura 38. Peso de componente líquido (CONSOLID 444) para adicionar a las muestras

Figura 39. Peso de componente líquido (CONSOLID 444) para estabilizar muestras

Figura 40. Peso de formulación sólida (SOLIDRY) para estabilizar muestras

Figura 41. Adición de formulación sólida (SOLIDRY) para estabilizar muestras

10 10 10 Murgu

Figura 42. Muestra C01 estabilizada con 04 dosificaciones diferentes

Figura 43. Ensayo de proctor modificado de la muestra estabilizada

Figura 44. Enrasado de material compactado de la muestra estabilizada

Figura 45. Ensayo de proctor modificado de la muestra estabilizada

M. Control of the con

Figura 46. Desmolde de muestras

Figura 47. Ensayo de CBR de muestra de suelo con Sistema Consolid (Inmersión de moldes)

Figura 48. Ensayo de CBR con Sistema Consolid (Determinación de deformaciones)

