UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

"Diseño del sistema de abastecimiento de agua potable y unidades básicas de saneamiento empleando biodigestores en él, caserío Urpay-Huamachuco - Provincia de Sánchez Carrión - La Libertad"

Área de Investigación:

Saneamiento

Autor(es):

Br. Rojas Revilla, Kyara Sarah Br. Rubio Ortiz, Laura Abigail

Jurado Evaluador:

Presidente: Quiroz Cabanillas, Guillermo Secretario: Salazar Perales, Alvaro Vocal: Merino Martinez, Marcelo

Asesor:

Vertiz Malabrigo, Manuel **Código Orcid**: 0000-0001-9168-8258

TRUJILLO – PERÚ 2021

Fecha de sustentación: 2021/08/11

UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

"Diseño del sistema de abastecimiento de agua potable y unidades básicas de saneamiento empleando biodigestores en él, caserío Urpay-Huamachuco - Provincia de Sánchez Carrión - La Libertad"

Área de Investigación:

Saneamiento

Autor(es):

Br. Rojas Revilla, Kyara Sarah Br. Rubio Ortiz, Laura Abigail

Jurado Evaluador:

Presidente: Quiroz Cabanillas, Guillermo Secretario: Salazar Perales, Alvaro Vocal: Merino Martinez, Marcelo

Asesor:

Vertiz Malabrigo, Manuel **Código Orcid**: 0000-0001-9168-8258

TRUJILLO – PERÚ 2021

Fecha de sustentación: 2021/08/11

DEDICATORIA 1

Mi eterno agradecimiento a:

A Dios en primer lugar que con él en nuestro corazón todo se puede, por haberme dado la sabiduría para llegar hasta donde estoy, por haber derramado muchas bendiciones sobre mi persona y mi familia, por haberme dado unos buenos padres y una gran abuela ya que gracias a ellos todo esto es posible.

A mi madre SARA VIOLETA REVILLA CORREA, que gracias a sus esfuerzos y sacrificios pudo pagarme mi carrera y así hoy en día ser una profesional, gracias por tus consejos y por haberme enseñado desde pequeña hacer responsable y una mujer independiente, eres mi mejor ejemplo a seguir, eres mi mejor amiga y a la vez la mejor madre del mundo, te amo mucha mamita y esto es para ti.

A mi padre WALTER ROJAS CHACON, gracias papito que dentro de lo que pudiste me apoyaste, por enseñarme desde pequeña a ser valiente y terminar siempre con lo que empiezo, tu mano dura me hizo la mujer fuerte y valiente que soy hoy en día y tus consejos que me das para el presente y el futuro me han servido de mucho, te quiero mucho papito.

A mi mamita JULIA CORREA DE REVILLA gracias mamita July por tu apoyo incondicional todos estos años y por el regalo para la titulación, mi mamá y tu son lo más importante para mí y hare que te sientas orgullosa de mí y cumpliré todo lo que te prometido, te amo mucha mamita July.

DEDICATORIA 2

A Dios todopoderoso por brindarme salud, fuerzas y perseverancia para lograr mis objetivos y hacer lo posible en la culminación de este presente trabajo de investigación.

A mis padres, Marcos por ser uno de los pilares fundamentales en mi formación personal, inculcándome valores y brindándome su amor gracias padre por ser el motor que me impulsa a salir adelante; a mi madre Liliana que, gracias a sus consejos, apoyo total, su entusiasmo, el gran ejemplo que me brinda de luchar por nuestros objetivos, la valentía y su amor incondicional hicieron realidad mi meta, gracias madre por ser mi motivo.

A mis queridos hermanos Alex, David y Marco, quienes fueron fundamentales con sus ejemplos de sabiduría, más que hermanos son mis verdaderos amigos. Gracias a su experiencia, consejos he podido tomar buenas decisiones y llegar a ser lo que me propuse en la vida.

AGRADECIMIENTO

Nuestro gran agradecimiento a la Municipalidad Provincial Sánchez Carrión y al Caserío de Urpay y sus autoridades comunales, quienes desinteresadamente nos brindaron la información que necesitábamos para realizar nuestra investigación.

Nuestro profundo agradecimiento a la Universidad Privada Antenor Orrego y a los docentes de la carrera profesional de Ingeniería civil quienes con su apoyo permanente tanto científico como tecnológico ha hecho posible la culminación de nuestra carrera profesional.

Nuestro especial agradecimiento a nuestro asesor Mg. Ing. Manuel Alberto Vertiz Malabrigo, por todo su apoyo y su gran asesoramiento para el desarrollo de la presente tesis.

Gracias a Dios y a todos a nuestros familiares y amigos que nos apoyaron y creyeron en nosotras para la realización de esta tesis.

RESUMEN

El presente proyecto a nivel de Ingeniería denominado "DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE Y UNIDADES BÁSICAS DE SANEAMIENTO EMPLEANDO BIODIGESTORES EN EL, CASERÍO URPAY-HUAMACHUCO - PROVINCIA DE SÁNCHEZ CARRIÓN - LA LIBERTAD", surge de la necesidad de dar solución a los problemas existentes de agua y alcantarillado, que actualmente está afectando a la población del Caserío Urpay en la ciudad de Huamachuco, que no cuentan con agua debido a que no existe un sistema de abastecimiento de agua, solo sacan agua de una vertiente de una laguna que ya se está secando, por lo tanto su abastecimiento es menor para lo que necesita la población actual y futura, que incluso se ve condicionada su situación sanitaria en un futuro no muy lejano.

Por ello se realizará el Diseño de la Línea de conducción, Diseño del Reservorio y el Diseño de la Red de Distribución, aplicando los requerimientos técnicos y parámetros hidráulicos del Dimensionamiento.

Para el alcantarillado se va utilizar letrinas con Arrastre Hidráulico, en la cual se va utilizar Biodigestores ya que actualmente son muy utilizados para zonas rurales y también son de fácil uso y mantenimiento. Por otro lado, los Biodigestores son ecológicos y no contaminan el medio ambiente.

Por lo tanto, nuestro propósito fue hacer la tesis del Diseño del sistema de agua potable y alcantarillado utilizando Biodigestores, para así satisfacer la demanda total del caserío de Urpay.

Finalmente obtuvimos nuestro Diseño del sistema de agua potable y alcantarillado utilizando Biodigestores y de esta manera obtener nuestras conclusiones para satisfacer la necesidad y mejorar la calidad de vida de la población del caserío de Urpay.

ABSTRAC

The present Engineering level project called "DESIGN OF THE DRINKING WATER SUPPLY SYSTEM AND BASIC SANITATION UNITS USING BIODIGESTORS IN THE URPAY HUAMACHUCO - PROVINCE OF SÁNCHEZ CARRIÓN - LA

LIBERTAD", arises from the need to provide a solution to the Existing water and sewerage problems, which are currently affecting the population of the Urpay village in the city of Huamachuco, who do not have water because there is no water supply system, they only draw water from a slope of a lagoon that It is already drying up, therefore its supply is less than what the current and future population needs, which even affects their health situation in the not too distant future.

For this reason, the design of the conduction line, design of the reservoir and the design of the distribution network will be carried out, applying the technical requirements and hydraulic parameters of the sizing.

For the sewerage, latrines with Hydraulic Drag will be used, in which Biodigesters will be used since they are currently widely used in rural areas and are also easy to use and maintain. On the other hand, Biodigesters are ecological and do not pollute the environment.

Therefore, our purpose was to do the thesis of the Design of the drinking water and sewerage system using Biodigesters, in order to satisfy the total demand of the Urpay village.

Finally we obtained our Design of the drinking water and sewerage system using Biodigesters and in this way obtain our conclusions to satisfy the need and improve the quality of life of the population of the Urpay village.

PRESENTACIÓN

Señores Miembros del Jurado:

Habiendo cumplido y conforme a las normas establecidas en el Reglamento de Grados y Títulos y Reglamento de la Facultad de Ingeniería de la Universidad Privada Antenor Orrego, para obtener el título profesional de Ingeniero civil, se pone a su consideración el informe del trabajo de investigación titulado "DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE Y UNIDADES BÁSICAS DE SANEAMIENTO EMPLEANDO BIODIGESTORES EN EL, CASERÍO URPAY- HUAMACHUCO - PROVINCIA DE SÁNCHEZ CARRIÓN - LA LIBERTAD", con la convicción de alcanzar una justa evaluación y dictamen, excusándonos de antemano de los posibles errores involuntarios cometidos en el desarrollo del mismo.

ÍNDICE

DEDICATO	RIA 1	iv
AGRADECI	MIENTO	vi
RESUMEN.		vii
ABSTRAC		viii
PRESENTA	CIÓN	ix
ÍNDICE		x
I. INTRO	DUCCIÓN	1
1.1. Pro	oblema de investigación	1
1.1.1.	Realidad problemática	1
1.1.2.	Enunciado del problema	2
1.1.3.	Formulación del problema	3
1.2. Ob	jetivos	3
1.2.1.	Objetivo General	3
1.2.2.	Objetivos Específicos	3
1.3. Jus	stificación del estudio	3
II. MAR	CO DE REFERENCIA	4
2.1. An	tecedentes del estudio	4
2.1.1.	Antecedente Internacional	4
2.1.2.	Antecedente Nacional	5
2.1.3.	Antecedente Local	6
2.2. Ma	rco teórico	6
2.2.1.	Importancia del saneamiento	6
2.2.2.	Periodo de diseño	7
2.2.3.	Población de diseño	8
2.2.4.	Dotación, caudales de diseño	9
2.2.4.	1. Consumo promedio diario anual (Qm)	9
2.2.4.	2. Consumo máximo diario (Qmd)	9
2.2.4.	3. Consumo máximo horario (Qmh)	10
2.2.5.	Fuentes de abastecimiento	10
2.2.6.	Calidad de agua	11
2.2.7.	Análisis Físicos	12
2.2.8.	Análisis químico	12
2.3. Marc	o conceptual	13
2.4. Sist	tema de hipótesis	18

	2.4.1.	Hipótesis	18
	2.4.2.	Variables e indicadores	18
	2.4.2	2.1. Variables	18
	2.4.2	2.2. Operacionalización	18
III.	ME'	TODOLOGÍA EMPLEADA	19
3	.1. T	ipo y nivel de investigación	19
	3.1.1.	De acuerdo a la orientación o Finalid	ad:19
	3.1.2.	De acuerdo a la técnica de contrastac	ión:19
3	.2. P	oblación y muestra de estudio	20
	3.2.1.	Población:	20
	3.2.2.	Muestra:	20
3	.3. D	iseño de investigación	20
3	.4. T	écnicas e instrumentos de investigación .	20
	3.4.1.	FASE 1: Parámetros de Diseño	20
	3.4.1	1.1. Periodo De Diseño	20
	3.4.1	1.2. Población de Diseño	22
	3.4.1	1.3. Dotaciones	23
	3.4.1	1.4. Variaciones de Consumo	25
	3.4.1	1.5. Criterios de Calidad del Agua	27
	3.4.2.	FASE 2: Estudio Topográfico	28
	3.4.2	2.1. Localización	28
	3.4.2	2.2. Vías de acceso al lugar del proye	cto29
	3.4.2	2.3. Clima	30
	3.4.2	2.4. Objetivos	30
	3.4.2	2.5. Propósito	31
	3.4.2	2.6. Método empleado	31
	3.4.2	2.7. Desarrollo de los trabajos de gal	sinete31
	3.4.2	2.8. EQUIPOS Y MATERIALES UT	TILIZADOS31
	3.4.3.	FASE 3: Estudio de Suelos	33
	3.4.3	3.1. Generalidades	33
	3.4.3	3.2. Trabajos De Campo	33
	3.4.3	3.3. Ensayos De Laboratorio	34
	3.4.3	3.4. Perfil Estratigráfico:	34
	3.4.4.	FASE 4: Estudio de Impacto Ambien	tal48
	3.4.4	4.1. Situación actual de los sistemas .	49
	3.4.4	4.2. Características socio-ambientale	s del área de influencia55

3.4.4.3. Identificación y evaluación de impactos ambientales potenciales	58
3.5. Procesamiento y análisis de datos	59
3.5.1. Calculo de la demanda	59
3.5.2. Proyección de la población	63
3.5.3. Proyección de la demanda	64
3.5.4. Diseño de reservorios	79
3.5.4.1. Reservorio de 7m3	79
3.5.4.2. Reservorio de 15m3	82
3.5.4.3. Reservorio de 20m3	85
IV. PRESENTACION DE RESULTADOS	88
4.1. Propuesta de Investigación	88
4.1.1. Sistema de agua potable	88
4.1.2. Sistema de Saneamiento	90
4.2. Análisis E Interpretación De Resultados	91
4.2.1. Sistema de abastecimiento de agua potable	91
4.2.2. Servicio de saneamiento rural (UBS):	92
V. DISCUSIÓN DE RESULTADOS	93
CONCLUSIONES	94
RECOMENDACIONES	96
REFERENCIAS BIBLIOGRÁFICAS	97
ANEXOS	99

I. INTRODUCCIÓN

1.1. Problema de investigación

1.1.1. Realidad problemática

Según la Superintendencia Nacional de Servicios de Saneamiento (SUNASS), entidad reguladora del sector agua potable y saneamiento en el Perú: "El tratamiento aguas residuales se encuentra a nivel nacional en 32.7% al cierre del año 2010 con proyección al 33% al cierre del año 2011, encontrándose que no se ha relacionado directamente con el crecimiento de la cobertura de alcantarillado y lo que constituye, sin duda, una de las principales tareas pendientes (Flórez, 2014)"

Los agentes más importantes para el crecimiento socioeconómico de todos los pueblos, se encuentran conectados a diferentes aspectos como educación, salud, vivienda, etc. Por lo cual teniendo a consideración dichos aspectos de sanidad y mejores condiciones de la calidad de vida de los pobladores. La población del caserío de Urpay, Distrito de Huamachuco, Provincia Sánchez Carrión, La Libertad tienen un defectuoso sistema de agua potable, la población se provee por instalaciones propias (JASS), las cuales no cuentan con un tratamiento para agua potable, forzando a los usuarios a su consumo diario sin valorar los daños de estas y las enfermedades que pueden contraer este sistema de agua con el que cuentan.

Figura 1

Ubicación satelital del caserío Urpay

Fuente: Google Earth

Figura 2Se puede apreciar la topografía Urpay

Fuente: Elaboración propia.

Figura 3Se puede apreciar la ubicación de las viviendas

Fuente: Elaboración propia.

1.1.2. Enunciado del problema

La carencia del sistema de agua potable y unidades básicas empleando biodigestores y la población aumentada en la zona de estudio, conllevan a proponer el diseño de un sistema de agua potable más óptimo para los sectores que perteneces al caserío Urpay — Huamachuco.

1.1.3. Formulación del problema

¿Con el diseño de sistema de abastecimiento de agua potable y unidades básicas de saneamiento empleando biodigestores, se logrará abastecer a toda la población de Urpay en Huamachuco – La libertad – Perú?

1.2. Objetivos

1.2.1. Objetivo General

Realizar el diseño del sistema de abastecimiento de agua potable y unidades básicas de saneamiento para cubrir la demanda sanitaria en él, caserío Urpay- Huamachuco - Provincia de Sánchez Carrión - La Libertad.

1.2.2. Objetivos Específicos

- Efectuar un diagnóstico del estado actual del sistema de agua potable existente (empadronamiento de beneficiarios).
- Realizar los Estudios topográficos en el caserío Urpay.
- Realizar los estudios de mecánica de suelos en el caserío Urpay.
- Determinar el diseño de la red de distribución.
- Determinar el volumen de agua para la construcción del Reservorios.
- Realizar el Diseño de Unidades Básicas Sanitarias y Biodigestores.

1.3. Justificación del estudio

La investigación se justifica bajo uno de los principios fundamentales que el agua es uno de los recursos esenciales para la vida humana en la área geográfica de la comunidad beneficiaria, en la actualidad el caserío Urpay, Distrito de Huamachuco, Provincia Sánchez Carrión – La Libertad cuenta con un sistema de agua sin el tratamiento de aguas para el consumo humano, a ello se le agrega que es un sistema obsoleto y para una población, la cual a la actualidad ha aumentado, por ello no cubre las necesidades básicas de la población en cuanto a volumen suministrado, la calidad del agua y cobertura del servicio brindado.

El caserío de Urpay no cuenta con servicio de disposición de excreta, ni una planta de tratamiento de aguas residuales lo que conlleva a que la población

tenga enfermedades infecciosas, contaminación del medio ambiente donde se habita, etc.

El presente trabajo de investigación presenta un diseño de un sistema de abastecimiento de agua potable y unidades básicas de saneamiento empleando biodigestores la cual contribuirá con la población de Urpay - Huamachuco ayudando a tener una mejor calidad de vida. Realizando el diagnóstico de la población actual, además del sistema de agua existente y con estos datos obtenidos, realizaremos un nuevo diseño el cual cumpla con las necesidades de la población del caserío de Urpay.

I. MARCO DE REFERENCIA

2.1. Antecedentes del estudio

2.1.1. Antecedente Internacional

Masiel Del Socorro, Suce Aguirre; Joe José, Quezada Gutiérrez (2015). Colombia realizaron una investigación: "Propuesta de diseño de un Sistema de Abastecimiento de Agua Potable por bombeo eléctrico para el Asentamiento 23 de octubre de la comunidad limón N° 1 del municipio de Tola, Rivas período 2015- 2034." Para el diseño de un sistema de abastecimiento de agua potable se adoptó las "Normas técnicas de diseño de agua potable en el medio rural, publicadas por el INAA" (NTON 09001 – 99).

Se llegó a las siguientes conclusiones, al realizar un estudio en la población a beneficiar, la tasa de crecimiento, su nivel socioeconómico, para realizar un estudio de investigación más adecuado a las necesidades para la dotación de la población beneficiaria. Con el sistema de abastecimiento de agua potable propuesto, la población mejoraría las condiciones de vida en las que se encuentran y por ello el diseño propuesto fue el más adecuado, se adecuo al nivel socioeconómico de la población, ofreciendo resultados propicios en la realización del proyecto.

2.1.2. Antecedente Nacional

Alaín Marco Orlando, León Ruidías; Miguel Giancarlo, Tapia Meléndez realizaron una investigación: "DISEÑO HIDRAÚLICO DEL SISTEMA DE AGUA POTABLE Y ALCANTARILLADO CON PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DEL A.H. HUÁSCAR SECTOR I, DISTRITO JEQUETEPEQUE, LA LIBERTAD – 2018", se desarrolló el diseño hidráulico del sistema de agua utilizando el método de Hardy Cross así obtener el caudal en una red cerrada.

Se llegó a las siguientes conclusiones, realizando los estudios pertinentes como diagnosticar el estado actual del sistema de agua potable, los estudios fundamentales de ingeniería como, Topográficos y Mecánica de suelos en ellos se obtuvieron la información técnica la cual sirvió para elaborar el diseño hidráulico. Se planteó un tratamiento aerobio para a planta de tratamiento.

Robert, Malca Becerra; José Luis, Urbina Portilla, realizaron una investigación: "PROPUESTA TECNICA DEL SISTEMA DE AGUA POTABLE Y CREACION DE UNIDADES BASICAS SANITARIAS EMPLEANDO BIODIGESTORES, EN EL AA.HH. HUACA BLANCA BAJA, DISTRITO DE PACANGA, PROVINCIA DE CHEPEN-LA LIBERTAD", se desarrolló una propuesta la cual tiene como fin mejorar la vida de los pobladores, empleando métodos y realizando la propuesta.

Se llegó a las siguientes conclusiones, debido a la exigencia a resolver la necesidad al existente Diseño de Agua y Alcantarillado, que tiene actualmente al AA.H Huaca Blanca Baja, ya que dicho sistema se encuentra ineficiente por el crecimiento de la población y antigüedad del sistema. Se realizó un diseño de línea de conducción, previamente con el diagnóstico de la población a beneficiar y un cálculo a población futura.

Se va utilizar Letrinas empleando biodigestores, el cual facilitara la eliminación de desechos sólidos, mejorando la salubridad y por ende la calidad de vida de la población a beneficiar.

2.1.3. Antecedente Local

César Enrique, Rivera Méndez, realizaron una investigación:
"DISEÑO DE LA RED DEL ABASTECIMIENTO DE AGUA
POTABLE EN EL CASERÍO COIMACA, DISTRITO DE
SANAGORÁN, PROVINCIA DE SÁNCHEZ CARRIÓN,
DEPARTAMENTO DE LA LIBERTAD" el proyecto permitirá que los
estudios realizados den una solución al problema de la población a
beneficiar y mejoren su calidad de vida.

Se llegó a las siguientes conclusiones, la topografía es ondulada, se realizaron los estudios de ingeniería como mecánica de suelos; con dichos resultados se pudo procesar los datos y así llegar a realizar un cálculo para la población, dotación y caudal del diseño se planteó como solución el diseño del reservorio para una capacidad de 10 m3. El cálculo nos indica que las velocidades son bajas debido a que el caudal determinado por cálculo es pequeño, se colocaran cámaras rompe presión las cuales disiparan la energía que existe debido a la topografía ondulante.

2.2. Marco teórico

2.2.1. Importancia del saneamiento

El agua y saneamiento son factores importantes que contribuyen a la mejora de las condiciones de vida de las personas, en el Perú existen 7.9 millones de pobladores rurales de los cuales 3 millones (38%) no tienen acceso a agua potable y 5.5 millones (70%) no cuentan con saneamiento (Roger Agüero Pittman, 1997). Entonces nos podemos dar cuenta que no todos tenemos el beneficio de acceder al agua, y que siempre los más afectadas son las poblaciones con menos recursos, dentro de ellas se encuentran las poblaciones rurales.

Esto trae consecuencias negativas en el ambiente y la salud de las personas y el impacto es 3 veces mayor en niños y niñas y tenemos que tener en cuenta que esto en el futuro empeorará.

Para el 2025 se pronostica la escasez de agua en 48 países y dentro de ellos está el Perú,

ya que hemos tenido una debilidad histórica entre los años 1990 al 2002 por los limitados recursos económicos y el lento aprendizaje de los distintos gobiernos (Agüero, 1997). Por lo que nos podemos dar cuenta que no se entendió la importancia del tema de agua y saneamiento y no se abarco de manera integral el componente educativo y el reforzamiento organizacional de los modelos de gestión comunitaria, ante esto las ONG y las entidades de cooperación al desarrollo, fueron las que realizaron proyectos que llenaban estos vacíos y en la práctica hicieron invidencia en las políticas de intervención.

Durante los últimos 5 años y con el financiamiento del Banco Mundial, el Ministerio de Vivienda, Construcción y Saneamiento mediante el Programa Nacional de Agua Potable y Saneamiento Rural (PRONASAR), viene aumentando enormemente proyectos de agua y saneamiento con Operadores Regionales. Entre sus actividades incorpora los componentes de Infraestructura, Educación Sanitaria, Gestión de las Juntas Administradoras de Servicios de Saneamiento (JASS) y reforzamiento a la unidad técnica municipal (UTM).

Respecto a las comunidades rurales que están aisladas geográficamente, es necesario determinar alternativas de diseño y examinar costos, teniendo en cuenta la condición de difícil ingreso.

2.2.2. Periodo de diseño

Para poblaciones o ciudades, en este caso un caserío; los diseños son para habitantes con necesidades básicas, sobre todo para que mejoren sus factores económicos y sociales, para este diseño se debe tener un tiempo establecido de servicio, al cual se le hará las pruebas necesarias para que al finalizar el proyecto pueda funcionar al 100% y también

para que el proyectista que realice este nuevo diseño, pueda determinar

el mejor diseño, impidiendo altos costos, ya que de acuerdo a la tasa de

crecimiento se pudiera incrementar la población y se tendría que

realizar una segunda o más etapas. A los proyectos que tienen un

diseño se le podría dar un mejoramiento, por consecuencias de

mantenimiento o también extensión de servicios en asentamientos

existentes (RNE, 2006 p.114).

2.2.3. Población de diseño

El estudio poblacional es uno de los primeros trabajos que tenemos que

realizar dentro del diseño del sistema de abastecimiento de agua, esto

determina la variación de incrementación de la población, existen

distintos tipos de métodos matemáticos, de este modo se obtiene la tasa

de crecimiento, que la que va determinar el número de habitantes que

se lograran beneficiar con el servicio para nuestro periodo de diseño.

La población total del caserío Urpay, de acuerdo a la información del

INEI y de la densidad de vivienda, tiene una población actual de 868

habitantes. Para calcular la población futura para un periodo de 20 años

se utilizará la siguiente fórmula y el siguiente cuadro:

<u>Caserío Urpay – Huamachuco</u>

Población actual: Po = 868 habitantes

Población futura calculada hasta el año 20

Obras de captación: 20 años

Conducción: 10 a 20 años

Reservorio: 20 años

Redes: 10 a 20 años (tubería principal 20 años, secundaria 10 años).

Para poder calcular la población futura se ejecutó la siguiente formula:

 $Pf = Po x (r + 1)^t$

8

Pf = Población futura

Po = Población actual

r = Tasa de crecimiento anual

t = Tiempo en años, correspondiente al periodo de diseño

 Tabla 1

 Coeficiente de crecimiento línea por departamento (r)

DEPARTAMENTO	CRECIMIENTO ANUAL POR MIL HABITANTES (F)
Tumbes	20
Piura	30
Cajamarca	25
Lambayeque	35
La Libertad	20
Ancash	10
Huánuco	25
Junin	20
Pasco	25
Lima	25
Prov. Const. Callao	20
Ica	32
Huancavelica	10
Ayacucho	10
Cusco	15
Apurímac	15
Arequipa	15
Puno	15
Moquegua	10
Tacna	40
Loreto	10
San Martín	30
Amazonas	40
Madre de Dios	40

Fuente: Ministerio de salud

2.2.4. Dotación, caudales de diseño

En el RNE – OS. 100 (Consideraciones básicas de diseño de infraestructura sanitaria), indica que si se comprobara la no existencia de estudios de consumo y no se justificara su ejecución se debe tomar como dotación de 200 1/hab/día para climas templado y cálido.

2.2.4.1. Consumo promedio diario anual (Qm)

El consumo promedio anual, se precisa como el resultado de una estimación per cápita para la población futura del periodo de diseño, expresada en litros por segundo (l/s)

2.2.4.2. Consumo máximo diario (Qmd)

El consumo máximo diario se define como el día de máximo consumo de todos los registros observados durante los 365 días del año. Para poder realizar su cálculo, según el art. 1.5 de la Normal OS.100, si en caso no se cuenta con un registro estadístico de los consumos se debería utilizar un coeficiente K1 igual a 1.3.

2.2.4.3. Consumo máximo horario (Qmh)

El caudal máximo horario vendría a ser la hora de máximo consumo del día de máximo consumo, para poder realizar su cálculo, según el Art. 1.5 de la Norma OS.100, si en caso no se cuenta con un registro estadístico de los consumos se debería utilizar un coeficiente K2 el cual debería estar en el intervalo (1.8-2.5).

• Reglamento Nacional de Edificaciones

La dotación diaria por habitante, según el R.N.E. cambia mayormente de acuerdo al número de habitantes de una localidad, al tipo de uso que se le da y a su clima, para este caso se realizará para uso Doméstico el cual indica una dotación diaria de 120 lit/hab/día – 160 lit/hab/día.

• OMS: Recomienda los parámetros siguientes:

Tabla 2Dotaciones según población – clima

DOTACIONES PARA ZONAS RURALES				
Región Geográfica Letrinas con arrastre hidráulico (Según SNIP)				
Costa	90	lit/hab/ día		
Sierra	80	lit/hab/ día		
Selva	100	lit/hab/ día		

Fuente: Organización mundial de la salud.

2.2.5. Fuentes de abastecimiento

Las fuentes de abastecimiento tienen que proporcionar en grupo el gasto máximo diario; por lo tanto, en todo proyecto se tiene que establecer las necesidades inmediatas de la localidad siendo esencial

que la fuente brinde el gasto máximo diario para esta etapa, sin peligro de reducción por sequía o por otra causa. Entonces si la calidad de agua no cumple las normas que exigen el Reglamento Federal sobre obras de Provisión de Agua Potable, tendrá que someterse a procesos de Potabilización (Rodríguez P., 2001).

Las aguas se califican en:

- Aguas Meteóricas: Para usar este tipo de agua se tiene que disponer de fuentes apropiadas, tener en cuenta que la intensidad de la lluvia sea adecuada, solo así se tendrá una captación para uso temporal, doméstico, industrial, dentro de ellos son lluvias, nieve, granizo.
- Aguas Superficiales: Es aquella agua que viene de ríos, arroyos, canales, lagos, acequias y presas. Podrían estar contaminadas por distintas circunstancias como actividades mineras, desagües domésticos, industrias, presencia de animales. Si se obtiene este tipo de agua, se debe tener en cuenta sus características físicas, químicas y bacteriológicas, para el consumo humano.
- Aguas Subterráneas: Está formada por agua que está en el subsuelo, procedente de acuíferos, manantial, pozos someros, noria o profundos y de galería filtrante horizontales o verticales.

2.2.6. Calidad de agua

Características físicas, químicas y bacteriológicas del agua que lo hacen aptos para el consumo humano, sin implicancias para la salud, incluyendo apariencia, gusto y olor (R.N.E, 2011).

2.2.7. Análisis Físicos

Estos análisis determinan la turbiedad, color, olor, sabor y temperatura. La turbiedad es la materia orgánica en suspensión: arcillas, barros, materia orgánica y organismos microscópicos. Sanitariamente es inofensivo, si se refiere a arcilla o a otras sustancias minerales, pero sería peligrosa si la turbiedad viene de aguas calcáreas o residuos industriales. El color depende mayormente de la descomposición de materia vegetal o de sales de hierro. No debería ser mayor del grado 20 de la escala normal de cobalto, pero sería mejor que sea menor de 10.

El olor y el sabor tienen una relación íntima y casi siempre van unidos; pero a veces puede haber sabor en el agua sin olor. No hay forma de medir el olor y el sabor, por ellos, en los análisis solo se expresa si este es aromático, rancio, etc. (Rodríguez, 2001, p. 13).

Tabla 3

Parámetros de calidad y límites máximos de agua potable en el Perú.

SUSTANCIA	CONCENTRACIÓN	CONCENTRACIÓN	
	MÁXIMA ACEPTABLE	MÁXIMA TOLERABLE	
Sólidos totales	500 mg/l	1,500 mg/l	
Color	5 Unidades	50 unidades	
Turbiedad	5 Unidades	25 unidades	
Sabor	No rechazable		
Color	No rechazable		
Hierro (fe)	0.3 mg/l	mg/l	
Manganeso) (Mn	mg/l	0.5 mg/l	
Cobre (Cu)	mg/l	1.5 mg/l	
Zinc) (Zn	5.0 mg/l	15 mg/l	
Calcio) (Ca	75 mg/l	200 mg/l	
Magnesio) (Mg	50 mg/l	150 mg/l	
Sulfato (SO4)	200 mg/l	400 mg/l	
Cloruro (CI)	200 mg/l	600 mg/l	
pН	7.0 – 8.5	6.5 – 9.2	

Fuente: Organización mundial de la salud.

2.2.8. Análisis químico

Consiste en investigar la composicion mineral del agua y su probabilidad de emplearla para la bebida, uso doméstico o industriales. Igualmente, los indicios de la contaminación por el contendio de cuerpos que no son compatibles con su origen geológico.

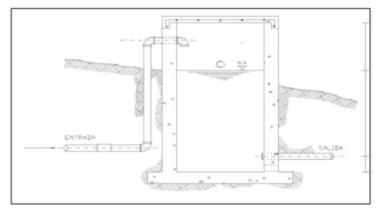
Tabla 4

Composicion mineral del agua

SUSTANCIA	CONCENTRACIÓN MÁXIMA PERMISIBLE (mg / l)
Plomo	0.05
Arsénico	0.05
Selénico	0.01
Cromo	0.05
Cianuro	0.20
Cadmio	0.01
Bario	1.00

Fuente: Organización Mundial de la salud

2.3. Marco conceptual


- Aforo: Es una operación mediante la cual se miden las velocidades, profundidades y anchuras de las diferentes corrientes para poder determinar el caudal, mediante la utilización de un instrumento llamado correntómetro (SENAMHI, 2013, p.13).
- **Agua potable:** Es aquella que al consumirla no daña el organismo del ser humano ni daña los materiales al ser usados en la construcción del sistema (Pittman, 1997).
- Biodigestor: Es un contenedor cerrado, hermético e impermeable, en el cual se bota materia orgánica como; desechos de vegetales y frutas, excremento tanto de rumiantes o humanos, en una específica dilución con agua, esta combinación es mediante la fermentación anaerobia por acción de microorganismos, es deteriorada teniendo como producto gas metano (biogás) y su subproducto liquido (biol), este puede ser utilizado como fertilizante ya que tiene bastante nitrógeno, fosforo y potasio
- Cámaras rompe presión: Cuando existe mucho desnivel entre la captación y algunos puntos a lo largo de la línea de conducción, se puede generar presiones superiores a la máxima que puede soportar una tubería.

En esta situación, se necesita la construcción de cámaras rompe-presión que permitan disipar la energía y reducir la presión relativa a cero (presión atmosférica), con la finalidad de evitar daños en la tubería (Agüero, 1997). La instalación de una cámara rompe – presión debe disponer de un flotador o regulador de nivel de agua para que se realice el cierre automático para cuando se encuentre llena la cámara o para periodos de ausencia de flojo es necesario el uso de cámaras para poder disminuir la presión de la red de agua, ya que cuando es mayor la pendiente aumenta debido a su topografía, su uso es según el reglamento ósea cada 50 m de desnivel se coloca una cámara rompe presión (Ulloa, 2016 pag.19).

Se recomienda lo siguiente para diseñar una cámara rompe presión:

- Uso de una sección de 0.60 m * 0.60 m.
- Altura mínima de 0.10 m.
- Borde libre de 0.30 m.
- La tubería de entrada está por encima del nivel de agua.
- La tubería de salida debe tener una canastilla para evitar la salida de objetos.
- La cámara tendrá un aliviadero o rebose.

Figura 4Cámara rompe presión

Fuente: Norma Técnica de Diseño: opciones tecnológicas parasistemas de saneamiento en el ámbito rural, pág. 82

- Captación: Son obras civiles y equipos electromecánicos que se utilizan para reunir y disponer adecuadamente del agua superficial o subterránea. Aquellas obras varían de acuerdo con la naturaleza de la fuente de abastecimiento, su localización y magnitud. (Rodríguez, 2001).
- Caudal: Es el volumen de agua que pasa por una sección transversal determinada en la unidad de tiempo, se expresan mayormente en m3/s (Ordoñez, 2011, p.15).
- Caudal de diseño para línea de conducción: Para realizar el diseño de líneas de conducción se utiliza el caudal máximo diario para el período de diseño que se ha seleccionado.
- Conexión domiciliaria: Cuando el suministro se realice mediante redes de distribución, cada vivienda debe dotarse de una conexión predial y de esta conexión hasta la UBS y el lavadero multiusos.
- Consumo de agua: Volumen de agua utilizado para cubrir las necesidades de los usuarios (Recursos, 2015).
- **Diámetro mínimo:** Para las tuberías principales será de 50mm para uso de vivienda (R.N.E, OS-0.50, 2006, pag 4).
- Infraestructura Sanitaria: Es la organización en redes de unidades perimetrales de proveer servicios básicos de salud, con los recursos locales disponibles, para las más urgentes necesidades de la población. (SEAPAL, 2017).
- Línea Aducción: Mayormente las fuentes de agua están alejadas de los centros poblados a los cuales se les quiere servir, necesitando por esto diseñar largas líneas de aducción (Hurtado y Martínez, 2012, pag.23).

- Línea de conducción: Se refiere al transporte de agua que conecta la captación con la estación de depuración o tanque de almacenamiento, se hace mediante una línea de conducción.
 Como la captación se encuentra en un nivel más alto que el del reservorio, la energía que haga circular el agua, será la gravedad; además la línea de conducción se calculara para el día máximo de consumo (Vierendel, 2009).
- Métodos de Aforo: Es importante medir la cantidad de agua de las fuentes, para poder darnos cuenta a la cantidad de población que va poder beneficiar. El aforo es la operación de medición del volumen de agua de acuerdo a un tiempo determinado, este vendría a ser el caudal mínimo, el cual debe ser mayor que el consumo máximo diario, con el fin de poder cubrir la demanda de agua de la población futura. Lo mejor sería que se realicen en temporadas críticas es decir en los meses más secos y los meses cuando hay lluvia para así poder conocer caudales mínimos y máximos.
- **Profundidad:** Diferencia de nivel entre la superficie del terreno y la generatriz inferior interna de la tubería (R.N.E, 2009).
- **Recubrimiento:** Diferencia de nivel entre la superficie de terreno y la generatriz superior externa de la tubería (RNE, 2009).
- Red de distribución: Se llama red de distribución al conjunto de tuberías que partiendo del reservorio de distribución y siguiendo su desarrollo por las calles de la ciudad sirven para llevar el agua potable al consumidor (Vierendel, 2009).
- Redes abiertas: En el que caso se tenga menos de 30 conexiones, se
 determinará los caudales por ramales y se hará por el método probabilístico
 o de simultaneidad; si fuera el caso se usaría la herramienta de software,
 llamada Watercad.

- Reservorio: Son unidades destinadas a compensar las variables horarias de caudal, garantizar la alimentación de la red de distribución, en casos de emergencia o cuando un equipo de bombeo trabaja varias horas al día, proveyendo el agua necesaria para el mantenimiento de presiones en la red de distribución (Rivera, 2004).
- Sistema de distribución de agua (SDA): Abarca la infraestructura para el almacenamiento, redes de distribución y dispositivos de entrega tales como conexiones domiciliarias (SUNASS, 2008).
- **Sistema de producción de agua (SPA):** Abarca la infraestructura para la captación, conducción de agua cruda y almacenamiento (Ibíd, 2008).
- Toma de agua: La toma de agua es la infraestructura que se construye al
 contorno de una fuente de agua, su objetivo principal es garantizar un
 suministro insistente de agua que se pueda acoplar a las condiciones
 locales.
- Tubería: Para seleccionar la clase de tubería se debe tomar en cuenta los criterios que se establece en la tabla que muestra la clase comercial de tubería con sus correspondientes cargas de presiones.

Tabla 5 *Clases de tubería*

CLASE	PRESIÓN MÁXIMA	PRESIÓN MÁXIMA
	PRUEBA (mca)	TRABAJO (mca)
5	50	35
7.5	75	50
10	100	70
1.5	150	100

Fuente: Centro panamericano de ingeniería sanitaria y ciencias del ambiente 2004

 Unidad básica de saneamiento (UBS): La UBS, es una estructura que cuenta con un inodoro, lavadero multiuso, ducha y conducto de evacuación (RM 173-2016-VIVIENDA).

2.4. Sistema de hipótesis

2.4.1. Hipótesis

Con el diseño del sistema de abastecimiento de agua potable y unidades básicas de saneamiento empleando biodigestores, se va lograr abastecer a toda la población de Urpay en Huamachuco – La libertad – Perú.

2.4.2. Variables e indicadores

2.4.2.1. Variables

- Variable independiente

(V1): Sistema de abastecimiento de agua potable y unidades básicas de saneamiento empleando biodigestores.

- Variables dependiente

(V2): Cubrir la demanda sanitaria en el caserío de Urpay.

Operacionalización

- Variable independiente

VARIABLE	DEFINICIÓN	INDICADOR	UNIDAD	INSTRUMENTO
INDEPENDIENTE	CONCEPTUAL		DE	DE
			MEDIDA	INVESTIGACIÓN
Sistema de	El agua potable es	Población	Hab.	Empadronamiento
abastecimiento de	la que se consume			
agua potable y	sin restricciones	D / '/	T , /1 1 / 1/	DNE
unidades básicas de saneamiento	para beber o	Dotación	Lts/hab/dí a	R.N.E
empleando biodigestores.	alimentos.	Caudal	Lts/s	Vertedero

- Variable dependiente

VARIABLE	DEFINICIÓN	INDICADOR	UNIDAD	INSTRUMENTO
DEPENDIENTE	CONCEPTUAL		DE	DE
			MEDIDA	INVESTIGACIÓN
Abastecer a toda la	El caserío de	Población	Hab.	Empadronamiento
población de Urpay	Urpay pertenece a	Caudal	Lts/s	Vertedero
en Huamachuco – La	la ciudad de	Periodo de	Años	Cuadro de oferta y
Libertad – Perú.	Huamachuco,	diseño		demanda
	departamento de			
	La Libertad.			

II. METODOLOGÍA EMPLEADA

3.1. Tipo y nivel de investigación

3.1.1. De acuerdo a la orientación o Finalidad: Aplicada

3.1.2. De acuerdo a la técnica de contrastación:

Explicativa

3.2. Población y muestra de estudio

3.2.1. Población:

Los sectores Santa Elena y Pampa Verde, Chanchacap y Namumaca del caserío Urpay, Distrito de Huamachuco, Provincia de Sánchez Carrión – La Libertad.

3.2.2. Muestra:

Las muestras de estudio son consideradas de los sectores:

- 1. Santa Elena y Pampa Verde
- 2. Chanchacap
- 3. Namumaca

3.3. Diseño de investigación

Diseño de investigación de campo; ya que la recolección de datos, como el empadronamiento de beneficiarios, estudio de suelos, estudios topográficos se realizaron en el caserío de Urpay, los que se procesaron para afirmar el adecuado trabajo de investigación.

3.4. Técnicas e instrumentos de investigación

3.4.1. FASE 1: Parámetros de Diseño

3.4.1.1. Periodo De Diseño

Un sistema de mantenimiento de agua se proyecta de modo de atender las necesidades de considera funcional el sistema, intervienen una serie de variables que deben ser evaluadas para lograr un proyecto económico aconsejable.

Por lo tanto, el periodo de diseño, puede definirse como el tiempo para el cual el sistema es eficiente al 100%, ya sea por capacidad en la conducción del gasto deseado o por la resistencia física de las instalaciones. El periodo óptimo de diseño es el tiempo de duración de todos los elementos que componen el Proyecto. Existen diversos factores que determinan el periodo óptimo de diseño mencionándose algunos:

- La vida útil de las estructuras, que está en función de la resistencia física del material que lo constituye y el desgaste que sufren estas.
- El estudio de factibilidad, que depende primordialmente del aspecto económico.
- El crecimiento poblacional, que es un factor muy importante porque incluye posibles cambios en el desarrollo industrial y comercial de la comunidad ya que pueden variar los índices económicos.

Generalmente los sistemas se diseñan y se constituyen para satisfacer la población mayor que la actual.

La población de la zona es de crecimiento moderado pues tiene una tasa de crecimiento de 0.84 por ciento, por ello con muchas posibilidades de desarrollo, pero con un área urbana no definida y con una población mucho menor de 10,000 habitantes, por lo tanto, se asume un periodo de diseño de 20 años.

En la evaluación de campo se han registrado en total de 201 viviendas, 05 locales comunales y 02 I.E. Considerando una estimación de 4.17 habitantes por lote tendríamos 868 habitantes, más 15 habitantes como población flotante correspondiente a profesores, administrativos, auxiliares, y otros alumnos que acuden de localidades aledañas; hacen un total de 868 habitantes. Por tanto, consideramos este valor como dato base de la población, la misma que nos servirá para el dimensionamiento de las estructuras hidráulicas para el sistema de agua a construir.

Para la instalación de Unidades Básicas de Saneamiento, se considerará la población de la localidad de los cuales 868 habitantes serán los favorecidos con este proyecto.

La determinación de la población futura está basada en las normas establecidas para zonas rurales como es nuestro caso. El periodo

a proyectar es de 20 años y la tasa de crecimiento promedio es de 0.84 % anual.

3.4.1.2.Población de Diseño

Se determinó la población y la densidad poblacional para el periodo de diseño adoptado. La determinación de la población final de saturación para el periodo de diseño adoptado se realizó a partir de proyecciones, utilizando la tasa de crecimiento establecida por el organismo oficial que regula estos indicadores.

Para el cálculo de la población de diseño, tomaremos en cuenta las siguientes condiciones:

- La zona en estudio cuenta con un numero definido de lotes de vivienda y con área definida (rural), por lo tanto, se hace ha visto por conveniente aplicar el método de densidad poblacional.
- Los asentamientos humanos no son de formación reciente y existe datos de los datos de población realizados en el año 2017, por lo cual el cálculo de la población de diseño con el método matemático es más aceptable con la realidad y características de la zona.

Por lo tanto, la población de diseño se estimará por métodos adecuados para poblaciones en franco crecimiento dado por:

- Para el presente proyecto se ha considerado la tasa de crecimiento obtenida en la etapa de elaboración del perfil del Proyecto, cuyo valor es de 0.84 % (INEI 2017).
- Para la densidad de la población promedio sé está considerando
 4.17 hab./lote.
- Para la determinación de la población futura se tomó el método geométrico

Pf = Pi (1 + r)^t

Pf: población futura Pi: población actual r: tasa de crecimiento t: periodo de diseño

3.4.1.3. Dotaciones

La dotación representa la cantidad de agua necesaria para el desarrollo de las actividades de un núcleo urbano, y está dada en litros por habitantes por día (l/h/d); incluyendo en ella los consumos correspondientes al doméstico, comercial, industrial y otros usos.

El consumo de agua de una población es variable, porque se ve afectado de diversos factores que deben ser analizados y los cuales tenemos:

- Los factores económicos sociales, los cuales influyen directamente sobre el consumo de agua, es decir que la población consume más agua al mejorar su nivel de vida.
- Los factores climatológicos, mencionándose que en épocas de temperaturas altas la población consume más agua que en épocas de temperaturas bajas.
- El tamaño de la localidad, determinándose que el consumo de agua per cápita aumenta con el tamaño de la comunidad.
- Las medidas de control y medidas de agua, comprobándose que en viviendas que poseen medidor de agua el consumo es menor que las que no poseen medidor.

Según un muestreo realizado en el Caserío de Urpay se ha encontrado que el consumo promedio diario por familia es:

Tabla 6

Consumo

USO	CONSUMO (lit/hab/día)
Bebida y comida	25
Lavado de ropa	20
Baño y aseo personal	15
Servicios sanitarios	10
Incendio	0
Perdidas y gastos eventuales	10
TOTAL	80

Fuente: Elaboración propia.

Tabla 7Dotaciones

ALTURA	SIERRA	COSTA
- A más de 1,500msnm.	50	60
- A más de 1,500msnm (Con		
sistema de arrastre hidráulico).	80	100

Fuente: Reglamento nacional de Edificaciones.

Por tanto, se asume una dotación de 80 lt/hab/día, por encontrarse cerca del rango establecido por el R.N.E., y al haberse verificado el consumo medio en la localidad de Urpay.

Para el dato de dotación se tomó el estudio realizado por las encuestas donde ha procedido a determinar en campo el consumo por vivienda, tomando como muestra a las viviendas que se abastecen de agua, obteniendo los siguientes resultados:

3.4.1.4. Variaciones de Consumo

- Consumo Medio Diario $\mbox{$\|$}(Q_m)$

Es el promedio de los gastos diarios durante un año de registros expresados en lt/seg.

Representado por la siguiente expresión:

Por tanto: $Q_m = \frac{P_f \times 120}{96400} (lt/s)$

- Consumo Máximo Diario 🛭 (Qmd)

Denominándose así al gasto en el día de máximo gasto de desagüe que se genera durante un año.

Representado por la siguiente expresión:

$$Q_{md} = kdmc.Q_m$$

Donde:

kdmc: Coeficiente de variación diaria, que varía entre 1.2 a 1.5

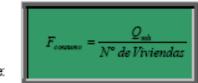
Según el R. N. C. se considera: Kdmc = 1.3

- Consumo Máximo Horario I(Qmh)

Es el gasto máximo de agua que se generan en una hora registrado el día de máximo gasto mediante observaciones medidas durante un año.

Representado por la siguiente expresión:

$$Q mh = 2.Qm$$


Se utiliza:

Para Poblaciones menores de 2,000 Habitantes y en zona rural será de **1.30.** Por tanto, se tendrá:

Δt	Pf	(Q_m) \square	(Q_{md})	$\mathbb{Q}(Q_{mh})$
120	768	0.442	0.575	0.884

- Factor de Consumo ó Consumo Unitario (IFConsumo) II

El consumo unitario, se obtiene mediante la siguiente relación.

Donde:

- Caudal de contribución al desagüe

Para el cálculo del sistema de alcantarillado, se considera toda la red mostrado en el respectivo plano.

- Coeficiente de reingreso recomendado (C)

Se asumirá un coeficiente de reingreso de 0.80

- Caudal promedio de desagüe (IQDI)

El consumo unitario, se obtiene mediante la siguiente relación

$$Q_D = CQ_m$$

- Caudal por infiltración

El caudal de infiltración en las tuberías toma el valor de acero ya que el material a utilizarse será PVC.

El caudal de infiltración en los buzones será:

$$qB = 500B$$

86400

B: Número total de buzones

- Coeficiente de fricción

Se han realizado las simulaciones hidráulicas considerando el coeficiente de fricción de Manning:

- Velocidad

Las líneas se diseñarán manteniendo velocidades de flujo mínimo de 0,6 m/s para evitar sedimentación por poca velocidad de arrastre y máximas de 3.0m/s con el fin de evitar la erosión por velocidades excesivas, tal como lo recomienda el Reglamento Nacional de Edificaciones (RNE).

En caso de que la velocidad sea menor a 0,5 m/s se procederá a evaluar mediante la tensión tractiva o la de velocidad de arrastre.

3.4.1.5. Criterios de Calidad del Agua

El agua utilizada como fuente de suministro público debe reunir condiciones físicas, químicas y microbiológicas.

Las condiciones físicas se relacionan con el color, el olor y la turbiedad. No es que toda agua coloreada o con cierto sabor y turbiedad sea inadecuada para el suministro público, más bien a estos tres parámetros se les considera por razones de estética; un consumidor de agua con estas características es posible que la rechace y recurra a utilizar un agua clara de calidad dudosa con gran riesgo para su salud. En cuanto a las condiciones químicas, se considera como agua potable aquella que no

contienen sustancias perjudicialmente ni toxicas en relación a la fisiología humana.

El agua para consumo humano puede y debe contener alguna concentración de sales, pues ellas además de contribuir al equilibrio osmótico en el sistema celular, son las que le dan el sabor agradable, lo que si debe controlarse es que su concentración no sobrepase ciertos límites.

La Organización Mundial de la Salud da normas internacionales que establecen concentraciones límites para las siguientes sustancias.

3.4.2. FASE 2: Estudio Topográfico

3.4.2.1.Localización

El Terreno donde se va a construir el sistema de agua y saneamiento a través de letrinas sanitarias está ubicado dentro del ámbito territorial del Distrito de Huamachuco en el Caserío de Urpay, sus coordenadas U.T.M. son:

REGION : LA LIBERTAD

DEPARTAMENTO: LA LIBERTAD

PROVINCIA : SANCHEZ CARRION

DISTRITO : HUAMACHUCO

CASERIO : URPAY

Norte : 9136600N

Este : 822700E

Altitud Prom. : 3,126.000 m.s.n.m.

Figura 5

Imagen satelital del Caserío Urpay

Fuente: Google Earth

3.4.2.2. Vías de acceso al lugar del proyecto

Para poder llegar a Huamachuco desde Trujillo, se debe tomar un autobús con la ruta Trujillo - Huamachuco que demora un promedio de 4 horas y por último se alcanza un transporte que demora de 10 minutos a 15 minutos que arribará a Urpay mediante la carretera Huamachuco – Sanagoran.

Los tramos Trujillo-Huamachuco, tienen una vía asfaltada sin ningún problema. La vía de comunicación que nos lleva de Huamachuco – Urpay es una parte trocha a nivel de tratamiento asfaltico y luego trocha carrozable que no tiene mantenimiento permanente por ello está en mal estado en muchos tramos.

Para llegar a la localidad de trabajo de desde la Localidad de Huamachuco hay entre 5.5 km a un tiempo aproximado de 15 minutos en vehículo.

Tabla 8

Tiempo de acceso

RECORRIDO (DESDE-HASTA)	TIEMPO(Hr)	TIPO DE ACCESO
- Trujillo – Huamachuco	4.00	Carretera Asfaltada
- Huamachuco – Urpay	15 min	Trocha Carrozable

Fuente: Elaboración Propia.

3.4.2.3.Clima

El clima de la zona es templado, el periodo de lluvias se presenta entre los meses de noviembre a abril, con una precipitación anual promedio de 750 mm./año.

Temperatura mínima: 14 °C

Temperatura media: 18 °C

Temperatura Máxima: 25 C

Humedad Relativa: 70%

Velocidad del Viento: 60 km/h.

3.4.2.4.Objetivos

- Realizar los trabajos de campo que permitan elaborar los planos topográficos.
- Posibilitar la definición precisa de la ubicación y dimensiones de los elementos estructurales.
- Establecer puntos de referencia para el replanteo durante la construcción (BM).

3.4.2.5. Propósito

El propósito del presente informe es el de obtener el plano topográfico, que defina la ubicación adecuada de todas las obras necesarias de saneamiento, así mismo la ubicación correcta a cada domicilio e instituciones públicas.

3.4.2.6. Método empleado

El trabajo de campo se dividió en dos fases, una corresponde a una inspección visual, concretando los aspectos más interesantes a medir y otra la medición mediante equipo topográfico (estación total, GPS) para obtener los puntos definitorios del terreno.

Los instrumentos y el grado de precisión empleados para el trabajo de campo y el procesamiento de los datos fueron consistentes con la dimensión del puente y sus accesos y con la magnitud del área estudiada.

3.4.2.7. Desarrollo de los trabajos de gabinete

En gabinete se hizo una evaluación de los datos registrados, tratando de que los puntos no se repitan, que no estén muy cerca, o que no se hayan tomado dos lecturas para un mismo punto con la finalidad de que estas anomalías no distorsionen las curvas del plano a elaborarse. Con esta preocupación se importaron los planos al programa de Autocad Civil 3D 2017 y luego se procedió a elaborar el plano topográfico con sus respectivas curvas de nivel.

3.4.2.8. EQUIPOS Y MATERIALES UTILIZADOS

EQUIPOS DE CAMPO

- 01 Estación Total
- 02 Primas
- 01 Wincha de 50 mt.

- 01 GPS marca Garmin.
- 01 Cámara fotográfica digital.

EQUIPOS DE INFORMATICA.

- Computadora I7 Core 2 Dúo.
- Hoja de cálculo topográfica.
- Programa de AutoCAD Civil 3D 2016.

MATERIALES.

- Libreta de campo.
- Pintura y Pincel.
- BM.

DESCRIPCIÓN	NORTE	ESTE	COTA
			(m.s.n.m.)
BM's-01	9'127,386	827,143	3,812.50
CE-01	9'128,189	827,182	3,781.12
CE-02	9'128,896	827,021	3,704.00
CE-03	9'129,226	827,143	3,688.00
CE-04	9'129,869	827,430	3,660.50
CE-05	9'130,110	827,399	3,688.00
CE-06	9'130,540	827,374	3,642.30
CE-07	9'130,856	827,276	3.589.20
CE-08	9'131,183	827,118	3,556.50
CE-09	9'131,333	827,022	3,556.50
CE-10	9'131,773	826,940	3,688.00
CE-11	9'132,400	826,570	3,536.00
CE-12	9'132,652	826,285	3,429.00
BM's-02	9'130,166	827,080	3,589.10
CE-13	9'130,477	827,793	3,552.30
CE-14	9'131,200	826,941	3,530.80
CE-15	9'131,645	826,833	3,508.70

CE-16	9'132,189	826,419	3,423.00
CE-17	9'132,623	825,947	3,334.90
CE-18	9'133,100	825,761	3,334.90
CE-19	9'133,547	825,477	3,273.50
CE-20	9'133,823	825,600	3,273.00

3.4.3. FASE 3: Estudio de Suelos

3.4.3.1. Generalidades

Como todo proyecto de Ingeniería Civil, la mecánica de suelos es importante con fines de cimentación de estructuras para proveer un soporte y una estabilidad adecuada de las mismas.

Primero se realizó la exploración del terreno, las pruebas de campo, los ensayos de laboratorio y trabajos de gabinete.

Los ensayos de laboratorio se realizaron de manera particular en el laboratorio TERRASLAB E.I.R.L.

- Ubicación:

La zona en estudio se encuentra ubicada en el caserío de Urpay, provincia Sánchez Carrión, departamento La Libertad. Ver plano de ubicación en la parte Anexo.

3.4.3.2. Trabajos De Campo.

El trabajo de campo consistió en el reconocimiento del terreno, inicialmente y luego a la excavación de calicatas de 1.20m a 2.50m, de profundidad respectivamente en las zonas de estudio.

Ubicación de calicatas, profundidad, nivel freático y número de muestras.

3.4.3.3. Ensayos De Laboratorio

Para los fines perseguidos se ha efectuado los siguientes ensayos:

- CONTENIDO NATURAL DE HUMEDAD, mediante procedimiento de secado en estufa a la temperatura de 110°
 C, según norma ASTM D2216.
- ANÁLISIS GRANULOMÉTRICO, por vía húmeda o por lavado con cribado manual, de acorde a la norma ASTM D422.
- LIMITES DE ATTERBERG, Límite líquido y Límite plástico, de acorde con la norma ASTM D4318.
- CLASIFICACION DE SUELOS, en función a la Norma ASTM D2487, que toma como base al Sistema Unificado de Clasificación de Suelos (SUCS).
- METODO DE PRUEBA ESTÁNDAR PARA LAS
 CARACTERISTICAS DE COMPACTACION EN
 LABORATORIO DE SEULOS UTILIZANDO
 ESFUERZO MODIFICADO, densidad máxima para la
 compactación del suelo.

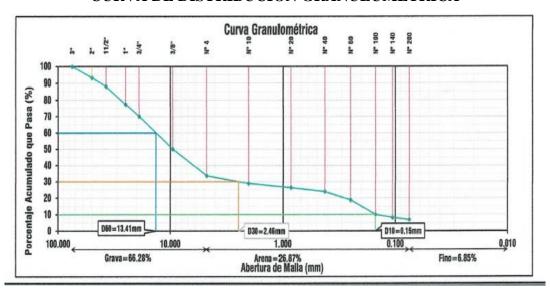
3.4.3.4. Perfil Estratigráfico:

Se desarrolló en función de las muestras recogidas de las calicatas excavadas, con las que se realizaron los ensayos de laboratorio, y se pudo determinar las principales propiedades físicas del suelo, de donde se tiene que la estratigrafía de la zona de estudio, está compuesta por depósitos coluviales y otros del tipo residual cuya formación obedece a la desintegración natural de formaciones rocosas, que en la actualidad se encuentra severamente meteorizadas, y ha dado paso a la formación de suelos de características heterogéneas, y comportamiento anisotrópico, donde predominan suelos del tipo limo ligeramente plástico, combinado con material

granular de perfil anguloso. Por lo que de la información recopilada se ha podido elaborar el siguiente cuadro, donde se expone las principales características de los suelos encontrados en el área de estudio.

1. REGISTRO DE SONDAJES -CALICATA N°1 ANALISIS GRANULUMETRICO POR LAVADO ASTM

DATOS DE ENSAYO	1ra Separación	Tamizado Simple / Fracción	
Tamiz de Separación	N°04	<n°04< td=""></n°04<>	
Pasa el Tamiz	***	N°04	
Masa Total Seca antes de la Separación (gr)	28,654.0		
Masa Total Seca >N°04 (gr)	19,012.0		
Masa Total Seca < N°04 (gr)	9,642.0	750.20	
Masa Lavada Seca (gr)	18,998.2	743.20	
Σ de Masa Retenida (gr)	18,993.00	742.80	


CRITERIO	0.5	0.5	
Fase de ensayo	Lavado	Tamizado	
1ra Separación		0.03	
2da Separación	0.05	0.05	

Diferencia con Masa Inicial	7.40
Diferencia entre MS y MLS	7.00
Diferencia entre MLS y Suma	7,40

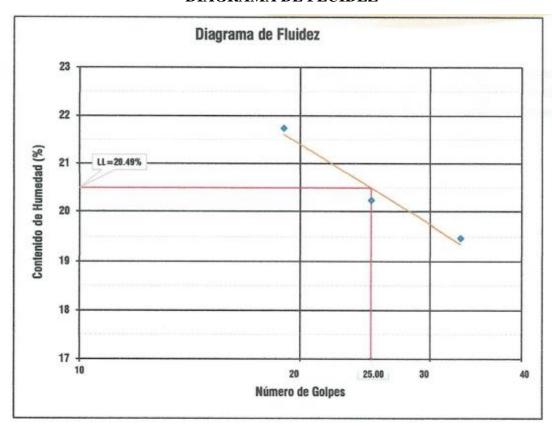
Tamiz N°	Abertura (mm)	Gruesa de Separación	Tamizado Simple (0.01 gr)	Tamiz Separador (%)
3*	75.000	0.0		
2"	50.000	1,959.0		
11/2"	37.500	1,464.0		
1"	25.000	3,061.0	1	
3/4"	19.000	2,061.0		Was.
3/8"	9.500	5,798.0		1000
N° 4	4.750	4,650.0		
N° 10	2.000	9.1	108.80	0.05
№ 20	0.850		56.00	
N° 40	0.425		51.40	
N° 60	0.250		116,40	
Nº 100	0.150		195.50	
N° 140	0.106		39,80	
N° 200	0.075	The second	29.90	TV A
Fondo	< 0.075		145.00	
Σ	Total	18,993.0	597.80	

Factor de Tamizado	% Parcial Retenido	% Acumulado Retenido
0.0034899	0.00	0.00
0.0034899	6.84	6.84
0.0034899	5.11	11.95
0.0034899	10.68	22.63
0.0034899	7.19	29.82
0.0034899	20.23	50.06
0.0034899	16.23	66.28
0.0449428	4.89	71.17
0.0449428	2.52	73.69
0.0449428	2.31	76.00
0.0449428	5.23	81.23
0.0449428	8.79	90.02
0.0449428	1.79	91.81
0.0449428	1.34	93.15
0.0449428	0.33	93.48

CURVA DE DISTRIBUCION GRANULUMETRICA

RESUMEN

Acumulado	E	sp.	RESUMEN DE RESU	ILTADOS
Pasa (%)	Mín.	Máx.	% Grava:	66.28 %
100.00			% Arena:	26.87 %
93.16			% Fino:	6.85 %
88.05			Tamiz N°4:	33.72 %
77.37			Tamiz N°40:	24.00 %
70.18			Tamiz N° 200:	6.85 %
49.94			D10:	13,41 mm
33.72			D30:	2.46 mm
28.83			D60:	0.15 mm
26.31			Ceof. Uniformidad:	89.28
24.00	1		Coef. Curvatura:	3.01
18.77			Cont. Humedad (W):	11.14 %
9.98	2		Límite Líquido:	20
8.19			Límite Plástico:	18
6.85			Índice de Plasticidad:	2
6.52			Clasificación SUCS	GP GM
			Clasificación AASHTO	A-1-a(0)


LIMITES DE ATTERBERG-ASTM D4318

LÍMITES DE CONSISTENCIA - ASYM D4318

ANÁLISIS DE L ASTN	ANÁLISIS DE LÍMITE LÍQUIDO ASTM D4318					
Ensayo N°	1	2	Ensayo N°		1	
Recipiente N°	R-1	R - 2	Recipiente N°		R - 3	
W. Rec.+W. Suelo Hum. (gr)	21.55	23.72	Número de Golpes	The same	33	\vdash
W. Rec.+W. Suelo Seco (gr)	19.80	21.90	W. Rec.+W. Suelo Hum.	(gr)	55.75	
W. Agua Contenida (gr)	1.75	1.82	W. Rec.+W. Suelo Seco	(gr)	50.99	
W. Recipiente (gr)	10.10	11.92	W. Agua Contenida	(gr)	4.76	
W. Suelo Seco (gr)	9.70	9.98	W. Recipiente	(gr)	26.56	
Contenido de Hum W. (%)	18.04	18.24	W. Suelo Seco	(gr)	24.43	
Cantidad mínima requerida (gr)	o.k	o.k	Contenido de Hum W.	(%)	19.48	
Límite Plástico	18	3	Límite Líquido			
ASTM D2216 Estándar test methods (moisture) content of soil and rock by		mination of water	ASTM D2216 Estándar tes		for laboratory de oil and rock by r	

Método de ensayo	X Multipunto	Unipunto	Agua usada	X Potable	Destilada
Método de preparación	Horno	X Ambiente	Método de preparación	Horno	X Ambiente
Método de secado	X Horno	Ambiente	Método de secado	X Horno	Ambiente

DIAGRAMA DE FLUIDEZ

2

R - 4

25 58.43

53.57

4.86

29.55 24.02

20.23

determination of water (moisture)

20

3

R - 5

54.93

47.54

7.39 13.55

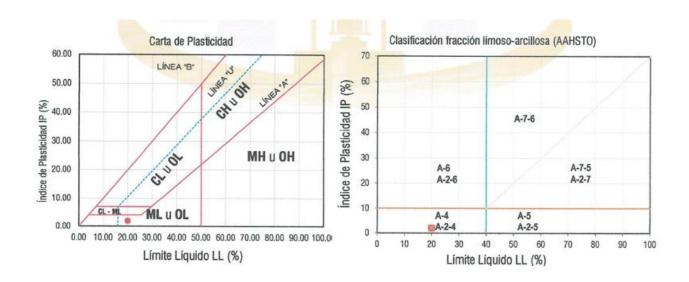
33.99

21.74

RESUMEN

RESUMEN DE RESULTAD	08
Límite Líquido:	20
Límite Plástico:	18
Índice de Plasticidad:	2
Cont. Humedad (W):	11.14 %
Densidad Húmeda(g/cm³) :	
Densidad Seca(g/cm³) :	
OTROS INDICES	
Colapsabilidad de Gibbs:	
Índice de Consistencia (Ic):	4.43
Índice de Liquidez (IL):	-3.43
Índice de Compresibilidad (Cc):	0.09
Contracción Lineal (CL):	
Índice de Flujo (I _F):	9.41
Índice de Tenacidad (I1):	0.21

CONTENIDO NATURAL DE HUMEDAD ASTM D2216


CONTENIDO DE HUMEDAD - ASTM D2216 - 19

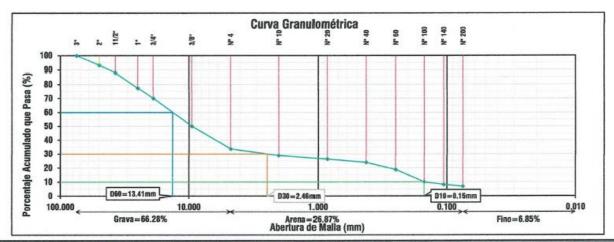
MÉTODO DE SECADO :	Homo 60 ± 5 C°	PROCEDENCIA DE LA MUESTRA :	Cantera de Acopio
MÉTODO DE REPORTE :	*B*	PROCEDIMIENTO DE TAMIZADO :	Integral
MATERIALES EXCLUIDOS:	Ninguno	TAMIZ SEPARADOR :	Ninguno
PRECISIÓN :	1.00%	MÉTODO DE REPORTE DE RESULTADOS :	*A*

	ASTM	D2216		
Ensayo N°		1	2	3
Recipiente N°	000	CA 01 - A	CA 01 - B	CA 01 - C
W. Rec.+W. Suelo Hum.	(gr)	1,471.64	1491.06	1,488.40
W. Rec.+W. Suelo Seco	(gr)	1,348.51	1367.16	1,362.97
W. Agua Contenida	(gr)	123.13	123.90	125.43
W. Recipiente	(gr)	235.41	251.36	248.27
W. Suelo Seco	(gr)	1,113.10	1115.80	1,114.70
Contenido de Hum W.	(%)	11.06	11.10	11.25
Con. de Hum W. Prom.	(%)		11.14	

CLASIFICCION DE SUELOS

Naturaleza	Suelo de partículas gruesas.	Material granular.		
Características	(Nornenclatura con símbolo doble).	Excelente a bueno como sub	grado.	
Tipo	Suelo de partículas gruesas.(Nomenclatura con símbolo doble).	Índice de Grupo (IG)	0	
Descripción	Grava mal graduada con limo con bloques	Fragmentos de roca, grava y	arena.	
Símbolo de Grupo	GP GM	A-1-a		
Clasificación	Grava mal graduada con limo con bloques GP GM	Fragmentos de roca, grava y arena. A-1-a		
Terreno Fundación:				

2. REGISTRO DE SONDAJES -CALICATA N°2 ANALISIS GRANULUMETRICO POR LAVADO ASTM


DATOS DE ENSAYO	1ra Separación	Tamizado Simple / Fracción
Tamiz de Separación	N°04	<n°04< td=""></n°04<>
Pasa el Tamiz	***	N°04
Masa Total Seca antes de la Separación (gr)	28,654.0	
Masa Total Seca >N°04 (gr)	19,012.0	
Masa Total Seca < N°04 (gr)	9,642.0	750.20
Masa Lavada Seca (gr)	18,998.2	743.20
Σ de Masa Retenida (gr)	18,993.00	742.80

CRITERIO	0.5	0.5
Fase de ensayo	Lavado	Tamizado
1ra Separación		0.03
2da Separación	0.05	0.05

Diferencia con Masa Inicial	7.40
Diferencia entre MS y MLS	7.00
Diferencia entre MLS y Suma	7,40

Tamiz N°	Abertura (mm)	Gruesa de Separación	Tamizado Simple (0.01 gr)	Tamiz Separador (%)	Factor de Tamizado	% Parcial Retenido	% Acumulado Retenido
3*	75.000	0.0			0.0034899	0.00	0.00
2"	50.000	1,959.0		V. 1 - 10 10 1	0.0034899	6.84	6.84
11/2"	37.500	1,464.0			0.0034899	5.11	11.95
1"	25.000	3,061.0			0.0034899	10.68	22.63
3/4"	19.000	2,061.0		No.	0.0034899	7.19	29.82
3/8"	9.500	5,798.0			0.0034899	20.23	50.06
Nº 4	4.750	4,650.0			0.0034899	16.23	66.28
N° 10	2.000	9.1	108.80	0.05	0.0449428	4.89	71.17
N° 20	0.850		56.00		0.0449428	2.52	73.69
N° 40	0.425		51.40		0.0449428	2.31	76.00
N° 60	0.250		116.40	1 1	0.0449428	5.23	81.23
N° 100	0.150		195.50		0.0449428	8.79	90.02
N° 140	0.106		39,80		0.0449428	1.79	91.81
N° 200	0.075		29.90	TO A	0.0449428	1.34	93.15
Fondo	< 0.075		145.00		0.0449428	0.33	93.48
Σ	Total	18,993.0	597.80				

CURVA DE DISTRIBUCION GRANULUMETRICA

RESUMEN

LTADOS	RESUMEN DE RESU	p.	Es	cumulado
66.28 %	% Grava:	Máx.	Mín.	Pasa (%)
26.87 %	% Arena:			100.00
6.85 %	% Fino:			93.16
33.72 %	Tamiz N°4:			88.05
24.00 %	Tamiz N°40:			77.37
6.85 %	Tamiz N° 200:			70.18
13.41 mm	D10:			49.94
2.46 mm	D30:			33.72
0.15 mm	D60:			28.83
89.28	Ceof. Uniformidad:			26.31
3.01	Coef. Curvatura:			24.00
11.14 %	Cont. Humedad (W):			18.77
20	Límite Líquido:			9.98
18	Límite Plástico:			8.19
2	Índice de Plasticidad:			6.85
GP GM	Clasificación SUCS			6.52
A-1-a(0)	Clasificación AASHTO	\neg		

LIMITES DE ATTERBERG-ASTM D4318

X Ambiente

Ambiente

Método de preparación

Método de secado

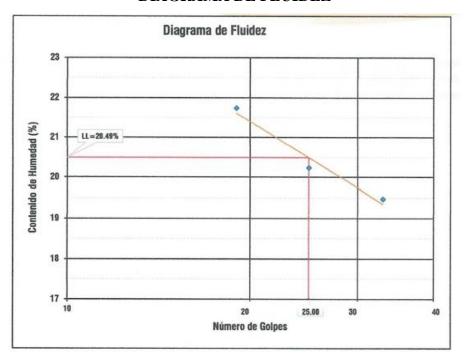
Horno

X Horno

LÍMITES DE CONSISTENCIA - ASYM D4318 ANÁLISIS DE LÍMITE PLÁSTICO ANÁLISIS DE LÍMITE LÍQUIDO **ASTM D4318 ASTM D4318** Ensayo Nº 2 Ensayo Nº 3 2 Recipiente N° Recipiente N° R - 3 R-1 R-2 R - 5 R - 4 W. Rec.+W. Suelo Hum. 21.55 23.72 Número de Golpes 33 (gr) 25 19 W. Rec.+W. Suelo Seco 19.80 21.90 W. Rec.+W. Suelo Hum. 54.93 (gr) (gr) 55.75 58.43 W. Agua Contenida W. Rec.+W. Suelo Seco 1.75 1.82 (gr) 50.99 53.57 47.54 (gr) W. Recipiente 10.10 11.92 W. Agua Contenida 4.76 4.86 (gr) 7.39 (gr) W. Suelo Seco 9.70 W. Recipiente (gr) 9.98 26.56 29.55 13.55 (gr) Contenido de Hum. - W. 18.04 18.24 W. Suelo Seco 24.43 24.02 (%) 33.99 (gr) Cantidad mínima requerida (gr) o.k o.k Contenido de Hum. - W. (%) 19.48 20.23 21.74 Límite Plástico 18 Límite Líquido ASTM D2216 Estándar test methods for laboratory determination of water ASTM D2216 Estándar test methods for laboratory determination of water (moisture) (moisture) content of soil and rock by mass. content of soil and rock by mass. Método de ensayo X Multipunto Unipunto Destilada Agua usada X Potable

Método de preparación

Método de secado


X Ambiente

Ambiente

Homo

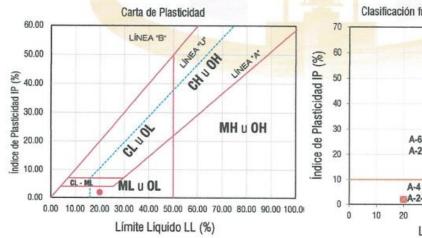
X Horno

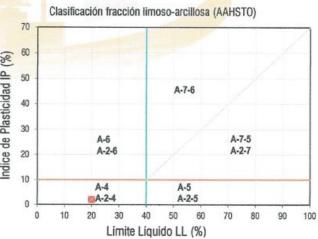
DIAGRAMA DE FLUIDEZ

RESUMEN

RESUMEN DE RESULTAD	OS
Límite Líquido:	20
Límite Plástico:	18
Índice de Plasticidad:	2
Cont. Humedad (W):	11.14 %
Densidad Húmeda(g/cm³) :	
Densidad Seca(g/cm³) :	
OTROS INDICES	
Colapsabilidad de Gibbs:	
Índice de Consistencia (Ic):	4.43
Índice de Liquidez (IL):	-3.43
Índice de Compresibilidad (Cc):	0.09
Contracción Lineal (CL):	
Índice de Flujo (I _F):	9.41
Índice de Tenacidad (I1):	0.21

CONTENIDO NATURAL DE HUMEDAD ASTM D2216


CONTENIDO DE HUMEDAD - ASTM D2216 - 19


MÉTODO DE SECADO :	Homo 60 ± 5 C°	PROCEDENCIA DE LA MUESTRA :	Cantera de Acopio
MÉTODO DE REPORTE :	*B*	PROCEDIMIENTO DE TAMIZADO :	Integral
MATERIALES EXCLUIDOS:	Ninguno	TAMIZ SEPARADOR :	Ninguno
PRECISIÓN :	1.00%	MÉTODO DE REPORTE DE RESULTADOS :	*A*

	ASTM	D2216			
Ensayo N°		1	2	3	
Recipiente N°	-	CA 01 - A	CA 01 - B	CA 01 - C	
W. Rec.+W. Suelo Hum.	(gr)	1,471.64	1491.06	1,488.40	
W. Rec.+W. Suelo Seco	(gr)	1,348.51	1367.16	1,362.97	
W. Agua Contenida	(gr)	123.13	123.90	125.43	
W. Recipiente	(gr)	235.41	251.36	248.27	
W. Suelo Seco	(gr)	1,113.10	1115.80	1,114.70	
Contenido de Hum W.	(%)	11.06	11.10	11.25	
Con. de Hum W. Prom.	(%)		11.14		
Referencia: ASTM D2216 Standar Water (Moisture) Co	Test		aboratory Dete	ermination of	

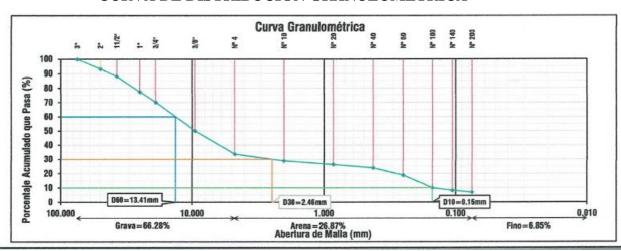
CLASIFICCION DE SUELOS

Naturaleza	Suelo de partículas gruesas,	Material granular.		
Características	(Nomenclatura con símbolo doble).	Excelente a bueno como subgrado.		
Tipo	Suelo de partículas gruesas.(Nomenclatura con símbolo doble).	Índice de Grupo (IG)	0	
Descripción	Grava mal graduada con limo con bloques	Fragmentos de roca, grava y arena.		
Símbolo de Grupo	GP GM	A-1-a		
Clasificación	Grava mal graduada con limo con bloques GP GM	Fragmentos de roca, grava y arena. A-1-a (0		
Terreno Fundación:				

REGISTRO DE SONDAJES -CALICATA N°3

ANALISIS GRANULUMETRICO POR LAVADO ASTM

DATOS DE ENSAYO	1ra Separación	Tamizado Simple / Fracción
Tamiz de Separación	N°04	<n°04< td=""></n°04<>
Pasa el Tamiz		N°04
Masa Total Seca antes de la Separación (gr)	28,654.0	100
Masa Total Seca >N°04 (gr)	19,012.0	
Masa Total Seca < N°04 (gr)	9,642.0	750.20
Masa Lavada Seca (gr)	18,998.2	743.20
Σ de Masa Retenida (gr)	18,993.00	742.80

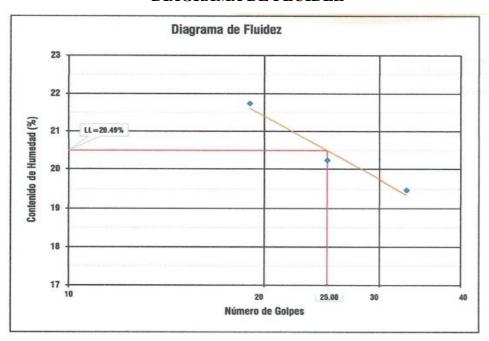

CRITERIO	0.5	0.5	
Fase de ensayo	Lavado	Tamizado	
1ra Separación		0.03	
2da Separación	0.05	0.05	

Diferencia con Masa Inicial	7.40
Diferencia entre MS y MLS	7.00
Diferencia entre MLS y Suma	7.40

Tamiz N°	Abertura (mm)	Gruesa de Separación	Tamizado Simple (0.01 gr)	Tamiz Separador (%)
3*	75.000	0.0		
2"	50.000	1,959.0		8 T - 5 W
11/2"	37.500	1,464.0		
1"	25.000	3,061.0		
3/4"	19.000	2,061.0		360
3/8"	9.500	5,798.0		100
Nº 4	4.750	4,650.0		
N° 10	2.000	9.1	108.80	0.05
№ 20	0.850		56.00	
N° 40	0.425		51.40	
N° 60	0.250		116,40	
N° 100	0.150		195.50	
N° 140	0.106		39,80	
N° 200	0.075		29.90	100
Fondo	< 0.075		145.00	
Σ	Total	18,993.0	597.80	

Factor de Tamizado	% Parcial Retenido	% Acumulado Retenido
0.0034899	0.00	0.00
0.0034899	6.84	6.84
0.0034899	5.11	11.95
0.0034899	10.68	22.63
0.0034899	7.19	29.82
0.0034899	20.23	50.06
0.0034899	16.23	66.28
0.0449428	4.89	71.17
0.0449428	2.52	73.69
0.0449428	2.31	76.00
0.0449428	5.23	81.23
0.0449428	8.79	90.02
0.0449428	1.79	91.81
0.0449428	1.34	93.15
0.0449428	0.33	93.48

CURVA DE DISTRIBUCION GRANULUMETRICA


RESUMEN

Acumulado Esp.		p.	RESUMEN DE RESU	ILTADOS
Pasa (%)	Mín.	Máx.	% Grava:	66.28 %
100.00			% Arena:	26.87 %
93.16			% Fino:	6.85 %
88.05			Tamiz N°4:	33.72 %
77.37			Tamiz N°40:	24.00 %
70.18			Tamiz N° 200:	6.85 %
49.94			D10:	13.41 mm
33.72			D30:	2.46 mm
28.83			D60:	0.15 mm
26.31			Ceof. Uniformidad:	89.28
24.00			Coef. Curvatura:	3.01
18.77			Cont. Humedad (W):	11.14 %
9.98			Límite Líquido:	20
8.19			Límite Plástico:	18
6.85	100		Índice de Plasticidad:	2
6.52			Clasificación SUCS	GP GM
			Clasificación AASHTO	A-1-a(0)

LIMITES DE ATTERBERG-ASTM D4318

LÍMITES DE CONSISTENCIA - ASYM D4318 ANÁLISIS DE LÍMITE PLÁSTICO ANÁLISIS DE LÍMITE LÍQUIDO **ASTM D4318 ASTM D4318** Ensayo Nº 2 Ensayo N° 2 3 Recipiente N° R-1 R-2 Recipiente N° R - 3 R - 4 R-5 Número de Golpes W. Rec.+W. Suelo Hum. 21.55 23.72 (gr) 33 25 19 W. Rec.+W. Suelo Seco 19.80 21.90 W. Rec.+W. Suelo Hum. 55.75 58.43 54.93 (gr) (gr) W. Agua Contenida 1.75 1.82 W. Rec.+W. Suelo Seco 50.99 53.57 47.54 (gr) (gr) W. Recipiente (gr) 10.10 11.92 W. Agua Contenida 4.76 4.86 7.39 (gr) W. Suelo Seco (gr) 9.70 9.98 W. Recipiente 26.56 29.55 13.55 (gr) Contenido de Hum. - W. (%) 18.04 18.24 W. Suelo Seco 24.43 24.02 33.99 (gr) Cantidad mínima requerida (gr) o.k o.k Contenido de Hum. - W. 19.48 20.23 21.74 (%) Límite Plástico Límite Líquido 20 ASTM D2216 Estándar test methods for laboratory determination of water ASTM D2216 Estándar test methods for laboratory determination of water (moisture) (moisture) content of soil and rock by mass. content of soil and rock by mass. Método de ensayo X Multipunto Unipunto X Potable Destilada Método de preparación Horno Ambiente Método de preparación Homo Ambiente Método de secado Horno Ambiente Método de secado Horno Ambiente

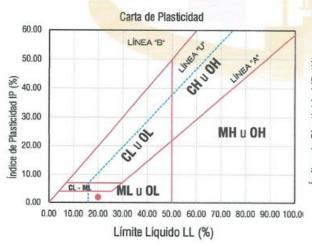
DIAGRAMA DE FLUIDEZ

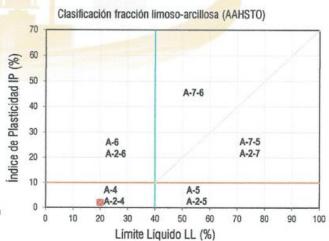
RESUMEN

RESUMEN DE RESULTAD	08
Límite Líquido:	20
Límite Plástico:	18
Índice de Plasticidad:	2
Cont. Humedad (W):	11.14 %
Densidad Húmeda(g/cm³) :	
Densidad Seca(g/cm ³) :	
OTROS ÍNDICES	
Colapsabilidad de Gibbs:	
Índice de Consistencia (Ic):	4.43
Índice de Liquidez (IL):	-3.43
Índice de Compresibilidad (Cc):	0.09
Contracción Lineal (CL):	
Índice de Flujo (I _F):	9.41
Índice de Tenacidad (I1):	0.21

CONTENIDO NATURAL DE HUMEDAD ASTM D2216

CONTENIDO DE HUMEDAD - ASTM D2216 - 19


MÉTODO DE SECADO :	Homo 60 ± 5 C°
MÉTODO DE REPORTE :	*B*
MATERIALES EXCLUIDOS :	Ninguno
PRECISIÓN :	1.00%


PROCEDENCIA DE LA MUESTRA:	Cantera de Acopio
PROCEDIMIENTO DE TAMIZADO:	Integral
TAMIZ SEPARADOR:	Ninguno
MÉTODO DE REPORTE DE RESULTADOS :	*A*

Ensayo N° Recipiente N°		1	2	3 CA 01 - C
		CA 01 - A	CA 01 - B	
W. Rec.+W. Suelo Hum.	(gr)	1,471.64	1491.06	1,488.40
W. Rec. + W. Suelo Seco	(gr)	1,348.51	1367.16	1,362.97
W. Agua Contenida	(gr)	123.13	123.90	125.43
W. Recipiente	(gr)	235.41	251.36	248.27
W. Suelo Seco	(gr)	1,113.10	1115.80	1,114.70
Contenido de Hum W.	(%)	11.06	11.10	11.25
Con. de Hum W. Prom.	(%)		11.14	

CLASIFICCION DE SUELOS

Naturaleza	Suelo de partículas gruesas,	Material granular.	
Características	(Nornenclatura con símbolo doble).	Excelente a bueno como subgrado.	
Tipo	Suelo de partículas gruesas.(Nomenclatura con símbolo doble).	Índice de Grupo (IG)	0
Descripción	Grava mal graduada con limo con bloques	Fragmentos de roca, grava y arena.	
Símbolo de Grupo	GP GM	A-1-a	
Clasificación	Grava mal graduada con limo con bloques GP GM	Fragmentos de roca, grava y arena. A-1-a (
Terreno Fundación:			

3.4.4. FASE 4: Estudio de Impacto Ambiental

Desde hace varios años son motivo de preocupación e investigación los impactos ambientales generados por la construcción de sistemas de agua y saneamiento, debido a su intensidad, magnitud y permanencia en los ecosistemas. Actualmente la situación de deterioro del ambiente ha motivado a las instituciones públicas y privadas a realizar estudios cada vez más específicos acerca de los procesos, actividades, equipos y materiales utilizados en la realización de sus trabajos, para determinar el grado de afectación que conllevan y de esta manera, poder establecer las medidas de mitigación correspondientes para minimizar o eliminar las posibles afectaciones ambientales.

Por tanto, de manera específica el presente trabajo tiene los objetivos de analizar con detalle los impactos ambientales generados durante la construcción que representa sólo una etapa del proyecto, y proponer las medidas de mitigación correspondientes o evitar las afectaciones de tipo adverso. Para ello, se llevaron a cabo las siguientes actividades específicas:

Elaborar un diagnóstico de la situación actual del proyecto en todos los aspectos y la descripción del mismo a evaluarse en este estudio.

- Determinación de los impactos ambientales que se generan durante la construcción y conservación del sistema de saneamiento integral a nivel de agua potable y unidades básicas de saneamiento.
- Propuesta de las medidas de mitigación para prevenir, minimizar, mitigar o compensar los efectos adversos de cada uno de los impactos identificados.

3.4.4.1. Situación actual de los sistemas

- Sistema de Agua Potable:

El Caserío de Urpay, específicamente en los sectores de Santa Elena, Pampa Verde, Chanchacap, y Namumaca, no cuenta con un adecuado sistema de abastecimiento de agua potable, tanto en calidad, cantidad y continuidad; ya que a la fecha la comunidad se abastece mediante un sistema deteriorado y en malas condiciones construida por los años de 1990 mediante el programa de financiamiento FONCODES, fecha desde la cual el sistema no ha tenido el mantenimiento apropiado por los usuarios del mismo ni por la entidad ejecutora.

- Captaciones:

En la actualidad, el sistema de abastecimiento de agua existente cuenta con 03 captaciones (una para cada sector); de las cuales la captación del sector Santa Elena Y Pampa Verde se encuentra actualmente seca; la captación del sector Chanchacap en mal estado y la captación del sector Namumaca de igual manera; por lo que se propone utilizar 07 fuentes de captación de agua identificados correspondientes a los manantiales Pampa Verde 01 cota: 3,537.00 msnm Q: 0.38 l/s, y Pampa Verde 02 cota: 3,536.00 msnm Q: 0.30 1/s (SECTOR PAMPA VERDE Y SANTA ELENA); El manantial Chanchacap 01 cota: 3,262.00 msnm Q: 0.40 l/s, Chanchacap 02 cota: 3,245.50 msnm Q: 0.30 l/s, Chanchacap 03 cota: 3,232.50 msnm Q: 0.25 l/s, y Chanchacap 04 cota: 3,225.50 msnm Q: 0.25 l/s (SECTOR CHANCHACAP); El Manantial Namumaca cota: 2,988.00 msnm Q: 0.25 1/s (SECTOR NAMUMACA). (Según aforos realizados a los manantiales). Las captaciones se encuentran en malas condiciones pero en funcionamiento las mismas que aportan hacia cada uno de los sectores que beneficia al caserío (Santa Elena, Pampa Verde, Chachacap, y Namumaca), de donde se abastece de servicio al Caserío Urpay, pero no funciona al 100%

pues presentan problemas por falta de mantenimiento (rajaduras en consecuencia filtración de agua, válvulas y llaves vencidas, invasión de maleza y tapa sanitaria inexistente), haciendo de que se pierda caudal en un 40% aprox. Por tal motivo, se plantea la demolición de mencionadas estructuras y la reconstrucción de las mismas.

Figura 6

Vista de captaciones en mal estado del Caserío Urpay.

Fuente: Fotografía Propia.

- Líneas de Conducción:

Las líneas de conducción del sistema de abastecimiento de agua potable para la localidad de Urpay está formada por tubería PVC SAP Ø ¾", y ½" C-7.5 en mal estado, resultando limitada para la demanda actual, válvulas y accesorios encargados de la conducción del agua desde las captaciones hasta el reservorio, se encuentra en malas condiciones de funcionalidad por la antigüedad del sistema, encontrándonos con tramos expuestos a la intemperie, y rotos.

Por lo que se ha determinado, luego de realizar el estudio topográfico y de campo correspondiente, que es necesaria la construcción de líneas de conducción para cada uno de los sectores de la siguiente manera: Sector Santa Elena y Pampa Verde con

8,840.46ml; sector Chanchacap con 1,057.70ml; y sector Namumaca con 56.73ml.

- Almacenamiento:

La localidad de Urpay, específicamente en los sectores de Santa Elena, Pampa Verde, Chachacap, y Namumaca, cuentan con 03 reservorios de 10 m3, 07 m3, y 05 m3 respectivamente que tienen una antigüedad de aproximadamente 26 años. Las estructuras están deterioradas y fisuradas con filtraciones de agua, la caseta de llaves está deteriorada, las tapas sanitarias son de concreto y se encuentran deterioradas; situación que amerita la construcción de un nuevo reservorio para cada uno de los sectores a intervenir, a fin de garantizar el funcionamiento hidráulico de este nuevo sistema con mantenimiento y servicio eficiente en función a las necesidades futuras de agua potable para el Caserío de Urpay, con el rendimiento admisible de la fuente.

Fotografía 7 y 8

Deficiente infraestructura de almacenamiento

Fuente: Fotografía Propia.

- Línea de aducción y redes de distribución:

Las líneas de aducción y redes de distribución del sistema de abastecimiento de agua potable para el Caserío de Urpay en sus

sectores de Pampa Verde, Santa Elena, Chanchacap, y Namumaca, están formadas por tuberías PVC de diámetros de 3/4", y ½", la misma que empieza a la salida de los reservorios de almacenamiento existentes en cada sistema y funcionan directamente con la red de distribución en un recorrido imposible de calcular, que a la fecha de su construcción fue diseñada y construida para un total de 85 familias beneficiarias con un total de 35 piletas publicas distribuidas a lo largo de los sistemas que se encuentran en mal estado de conservación y que debido al crecimiento de la población esta ha quedado limitada. Por la topografía y ubicación de las viviendas se concluye que la línea de aducción y red de distribución es lo mismo para este caso.

Por lo que se ha determinado, luego de realizar el estudio topográfico y de campo correspondiente, que es necesaria la construcción de líneas aducción y redes de distribución para cada uno de los sectores de la siguiente manera: Sector Santa Elena y Pampa Verde con 8,477.69ml; sector Chanchacap con 9,046.56ml; y sector Namumaca con 3,049.76ml.

Figura 9Tubería existente expuesto y en mal estado

Fuente: Fotografía Propia.

- Conexiones Domiciliarias:

En lo referente a conexiones domiciliarias en el Caserío Urpay, correspondiente a sus sectores de Santa Elena, Pampa Verde, Chanchacap, y Namumaca es necesario aclarar lo siguiente, del total de 208 familias existentes y beneficiarias del presente proyecto, el 100% no cuenta a la fecha con conexiones domiciliarias que les permita abastecerse de agua en sus hogares; por lo que las familias se abastecen de manantiales y/o de las pocas viviendas que cuentan con el servicio de otros sectores de Urpay.

Figura 10

Estado de las conexiones domiciliarias

Fuente: Fotografía Propia.

La población que se abastece de otras fuentes como puquios y riachuelos señala que el agua es de mala calidad no apta para el consumo humano, por lo mismo los niños se enferman del estómago.

Las familias que cuentan con el servicio de agua pagan una cuota familiar que no cubre los gastos de reparación del reservorio y evitar pérdidas de agua por fugas.

Las familias que acarrean agua de la acequia o manantial utilizan recipientes como baldes, bidones, cuya tarea la realizan por lo general las madres de familia y algunas veces el padre de familia. En sus viviendas depositan el agua acarreada en baldes y latas que no tienen las condiciones adecuadas, porque los mantienen sin tapas, expuestas a caída de basura, manipuleo de los niños con las manos, etc.

Sistema de Disposición de Excretas (Unidades Básicas de Saneamiento):

En lo referente a saneamiento (UBS) en el Caserío Urpay, existen diversos tipos de letrinas existentes, pero todas de tipo hoyo seco, unas de calamina construidas en los años 1990 por FONCODES, y otras de adobe construidas por los pobladores de la zona; por este motivo algunas familias hacen uso del campo libre y otras familias han construido por sus propios medios sus letrinas de hoyo seco, las cuales se encuentran a punto de colapsar por el tiempo de vida útil.

Figura 11

Estado de las letrinas existentes.

Fuente: Fotografía Propia.

Figura 12
Vista de los sectores a intervenir.

Fuente: Fotografía Propia.

3.4.4.2. Características socio-ambientales del área de influencia

Área de influencia del proyecto

El área de influencia ambiental está conformada por dos áreas bien definidas: el Área de Influencia Directa (AID), que constituyen las 208 familias beneficiadas en el sistema proyectado en la cual las actividades de construcción de saneamiento afectaran directamente los ecosistemas existentes dentro de su ámbito; y la otra, más alejada, que corresponde al Área de Influencia Indirecta (AII), donde los efectos de la obra sobre el entorno se ejercen en forma inducida.

Medio Fisco

Por las múltiples características topográficas y fisiográficas con que cuenta el lugar donde se desarrollará el proyecto se presenta con un clima cálido templado moderado húmedo, clasificado según el Servicio Nacional de Meteorología e Hidrológica - SENAMHI, con precipitaciones abundantes durante la estación de invierno, con humedad relativa calificada como seca.

La configuración topografía de esta zona es homogénea y sus desniveles se encuentran comprendidos entre los 3,090 y 3,200 m.s.n.m. A medida que se desciende en altitud, el relieve se vuelve accidentado e inclinado, con valles encañonados cuyas escorrentías erosiona continuamente las laderas cordilleranas. Finalmente, en la parte más baja del área de estudio, la topografía es moderadamente llana.

Climatología

El clima del lugar corresponde a un Páramo Pluvial Subalpino semi húmedo; en invierno la temperatura varía entre 14° y 9° y en verano la máxima llega a 30°, el periodo de lluvia se extiende desde octubre a marzo con frecuentes tormentas de corta duración. El área en estudio tiene una altura aproximada de 3,500 m.s.n.m.

Geología

En general la fisiografía del suelo de la zona del proyecto es variada pues presenta estratos de suelo con diferente composición geológica.

Los suelos de las zonas alto andinas, distribuidos en la cima de las cordilleras, son de textura ligera a media, generalmente de naturaleza ácida, y con alto contenido de materia orgánica. Empero, con bajo contenido de nitrógeno. Esta última característica se debe a las bajas temperaturas, que producen disminución de las actividades microbiológicas y hacen que la materia orgánica no se descomponga adecuadamente, generando acumulación con un incremento de la relación C-N (Carbono-Nitrógeno).

Los suelos son en general oscuros, con horizonte "A" desarrollado, cubierto por una vegetación de baja estatura, pero

que le proporciona alta cobertura y abundantes restos de follajes que están en permanente descomposición e integrándose al ciclo de la materia orgánica.

La Textura. - En la Jalca de Huamachuco predominan las siguientes clases texturales: franco, franco limoso y franco arenoso. Y en menor proporción se encuentran los francos arcillo limoso y franco arcillo arenoso.

- Tectonismo

En relación a la intensidad sísmica regional se estima que con una frecuencia de 76 años el área en estudio puede alcanzar una intensidad de 6,5 mb y una aceleración de 0,083g para condiciones medias de cimentación en material suelto.

Recursos Hídricos

Hidrográficamente, el ámbito de estudio se encuentra en la micro cuenca del río Chusgón.

Para la evacuación y control de las aguas fluviales y pluviales que puedan afectar la erosión de los estribos se ha previsto construir obras de protección ribereña con aletas de concreto armado a ambos lados de cada estribo.

- Áreas Naturales Protegidas

El ámbito de estudio no se encuentra ubicado dentro de la Zona de Áreas Naturales Protegidas por el Estado, conforme al Sistema Nacional de Áreas Protegidas por el Estado (SINANPE), que está integrado por todas las áreas definidas por leyes promulgadas sobre la materia. El PNRA fue creado para proteger, con carácter intangible, los recursos naturales de flora y fauna silvestre, las bellezas paisajísticas, proteger la cuenca hidrográfica del río.En el área de influencia directa no existen vestigios de restos arqueológicos en superficie. Asimismo, el Instituto Nacional de Cultura no tiene identificados sitios arqueológicos en el de influencia del proyecto.

- Recursos Socioeconómicos y Culturales

Los pobladores dentro del área de influencia se dedican a las actividades de agricultura, minería, ganadería, crianza de animales y comercialización de productos de pan llevar hacia otros lugares. En relación a los servicios sociales de la zona de estudio, existe una educación inicial, primaria y secundaria en todos los anexos dentro del área de influencia directa.

En cuanto a los establecimientos de salud, se advierte que en el área de estudio no existe un Puesto de Salud (Caserío de Urpay en sus 04 sectores), por lo cual se atienden en la ciudad de Huamachuco.

3.4.4.3. Identificación y evaluación de impactos ambientales potenciales

A) Etapa de Construcción

Impactos Positivos

- Generación de empleo temporal de la PEA desocupada del área de influencia
- Dinamizar la economía local del área de influencia

Impactos Negativos

- Ligero incremento de los niveles de contaminación atmosférica
- Riesgo de alteración de la calidad del agua y/o conflictos de uso
- Afectación de la flora y perturbación de la Fauna
- Erosión, alteración de la estructura del suelo. Modificación de la fisiografía, geomorfología y paisaje por el movimiento de tierras, durante la construcción de la obra.
- Contaminación de suelos por residuos de obra
- Alteración de las redes económicas, políticas, sociales y salud humana por el mal uso de explosivos en caso sea necesario y el inadecuado manejo de los residuos domésticos e industriales en el área del Proyecto.
- Afectaciones a propiedades

• Riesgos de accidentes.

B) Etapa de Funcionamiento Impactos Positivos

- Mejor calidad de vida en el Caserío de Urpay en sus 04 sectores.
- Generación de empleo y Dinamizar la economía local del área de influencia
- Mejora en el acceso a los servicios sociales
- Afianzamiento de las redes económicas, políticas y sociales.
 Incrementando la Demanda de Bienes y Servicios
- Disminución de la movilidad poblacional. Modificando las Formas de Vida

Impactos Negativos

- Afección de la Calidad del Aire
- Riegos en la seguridad personal de los usuarios de la vía.

3.5. Procesamiento y análisis de datos

3.5.1. Calculo de la demanda

DETERMINACIÓN DEL PERIODO DE DISEÑO

Sistema	Periodo (años)
Gravedad	20
Bombeo	10
Tratamiento	10

CALCULO DE LA POBLACION FUTURA

POBLACION ACTUAL			
Sector	N° Familias	N° Hab/Fam	N° Habit.
Santa Elena y Pampa Verde	76	2.67	203
Chanchacap	112	4.85	543
Namumaca	23	5	115
Total	211	4.17	861

TASA DE CRECIMIENTO		
Censo Poblac.(Hab.)		
2007	22489	
2017	22831	

Método Aritmético

4	Donde:
$P_d = P_i * \left(1 + \frac{r * t}{100}\right)$	Pf = Población final
100)	Pi = Población inicial
(n)	r = Tasa de crecimiento anual
$r = \left(\frac{P_d}{P_t} - 1\right) *1/t$	$\Delta t = t f - t i = N^\circ de$ años para los cuales se calcula la población

Año	Poblac. (hab)	t	r	Pf/Pi
2007	22489	-	-	-
2017	22831	10	0.0015	1.015
TOTAL		10		1.015

	0.0015	0.15%
r =	0.0015	0.15%

PROYECCION DE LA POBLACION DOMESTICA				4	
Cantanas	Pob. Actual	Tasa de	Periodo de		Pob.
Sectores	(PI)	crecimiento (Ks)	diseño	(tf-ti)	Final (Pf)
Santa Elena y					
Pampa Verde	203	0.15%	20)	209
Chanchacap	543	0.15%	20)	559
Namumaca	115	0.15%	20)	118
			TOT	'AL	886

Instituciones Educativas

I.E Primaria		
Año	N° Alumnos	
2016	49	
2017	50	
2018	51	
2019	53	
2020	55	
PROMEDIO	52	

I.E Inicial

Año	N° Alumnos
2016	23
2017	24
2018	25
2019	27
2020	30
PROMEDIO	26

I.E	Pob. Actual (Pi)	Tasa crecimiento (Ks)	Periodo de diseño (tf-ti)	Pob. Final (Pf)
Primaria	52	0.15%	20	54
Inicial	26	0.15%	20	27
			TOTAL	81

Locales Comunales e Iglesia

Iglesia		
AFORO 20		
TOTAL	20	

Local Comunal		
AFORO 20		
TOTAL	20	

I.E	Pob. Actual (Pi)	Tasa crecimiento (Ks)	Periodo de diseño (tf-ti)	Pob. Final (Pf)
Iglesia	20	0.15%	20	21
Local Comunal	20	0.15%	20	21
			TOTAL	42

DOTACION DE AGUA

DOTACIONES PARA ZONAS RURALES			
Región Geográfica	Letrinas con arrastre hidráulico (Según SNIP)		
Costa	90	Lit/hab/dia	
Sierra	80	Lit/hab/dia	
Selva	100	Lit/hab/dia	

USO DOMESTICO

Descripción	Dotación	N° Personas	Demanda Diaria
Viviendas	80	886	70880
		TOTAL	70880

USO ESTATAL

DOTACIONES PARA ZONAS RURALES			
E. Primaria y Inicial 20 Llt/hab/dia			
E. Secundaria	25 Llt/hab/dia		

Descripción	Dotación	N ° Personas	Demanda Diaria
Primaria	20	54	1080
Inicial	20	27	540
		TOTAL	1620

USO SOCIAL

Descripción	Dotación	N° Personas	Demanda Diaria
Iglesia	80	21	1680
Local Comunal	80	21	1680
		TOTAL	1680

RESUMEN DOTACION DE AGUA

Descripción	Dotación (l/t)
USO DOMESTICO	70880
USO ESTATAL	1620
USO SOCIAL	1680
TOTAL	74180

CALCULO DE CAUDALES DE DISEÑO

Caudal Promedio (Qm)

$$Q_m = \frac{Dotación\ total}{86400}$$

Caserío	Dotación (lt/hab/dia)	Caudal promedio (lt/seg)
Urpay	74180	0.859

Caudal Máximo diario (Qmd)

$$Qmd = Qm*K1$$
 Donde: $K1 = 1.3$ Según RNE

Caserío	Caudal	Factor	Caudal máximo
	Promedio (l/s)	K1=1.3	diario (lt/seg)
Urpay	0.859	1.300	1.116

Caudal Máximo horario (Qmh)

Qmh = Qm
$*$
K2 Donde: K2 = 2 Varía entre 1.5 y 2.5

Caserío	Caudal	Factor	Caudal máximo
	Promedio (l/s)	K2=2	horario (lt/seg)
Urpay	0.859	2.000	1.72

3.5.2. Proyección de la población

Nº AÑO		POBLACION I	DISTRITAL POBLACION	TOTAL	TASA DE CRECIMIENTO	№ HAB/VIV.	NUMERO DE VIVIENDAS
		ESTACIONARIA	FLOTANTE				V IV ILI (B) (C
0	2020	859	0	859	0.15	4.17	206.00
1	2021	860	0	860	0.15	4.17	206.00
2	2022	862	0	862	0.15	4.17	207.00
3	2023	863	0	863	0.15	4.17	207.00
4	2024	864	0	864	0.15	4.17	207.00
5	2025	866	0	866	0.15	4.17	208.00
6	2026	867	0	867	0.15	4.17	208.00
7	2027	868	0	868	0.15	4.17	208.00
8	2028	870	0	870	0.15	4.17	209.00
9	2029	871	0	871	0.15	4.17	209.00
10	2030	872	0	872	0.15	4.17	209.00
11	2031	873	0	873	0.15	4.17	209.00
12	2032	875	0	875	0.15	4.17	210.00
13	2033	876	0	876	0.15	4.17	210.00
14	2034	877	0	877	0.15	4.17	210.00
15	2035	879	0	879	0.15	4.17	211.00
16	2036	880	0	880	0.15	4.17	211.00
17	2037	882	0	882	0.15	4.17	212.00
18	2038	883	0	883	0.15	4.17	212.00
19	2039	884	0	884	0.15	4.17	212.00
20	2040	886	0	886	0.15	4.17	212.00

Fuente: Elaboración propia

3.5.3. Proyección de la demanda

INFORMACIÓN DE PROYECCIÓN DE COBERTURA DE LOS SERVICIOS

AÑO	COBERTUR	A AGUA (%)	COBERTURA	PÉRDIDAS DE	
	CONEXIONES	PILETAS	DESAGÜE (%)	AGUA	MICROMEDICIÓN
0*	0.00%	0.00%	100.0%	50%	0%
1	100.0%	0.0%	100.0%	20%	50%
2	100.0%	0.0%	100.0%	20%	50%
3	100.0%	0.0%	100.0%	20%	60%
4	100.0%	0.0%	100.0%	20%	70%
5	100.0%	0.0%	100.0%	20%	80%
6	100.0%	0.0%	100.0%	20%	90%
7	100.0%	0.0%	100.0%	20%	100%
8	100.0%	0.0%	100.0%	20%	100%
9	100.0%	0.0%	100.0%	20%	100%
10	100.0%	0.0%	100.0%	20%	100%
11	100.0%	0.0%	100.0%	20%	100%
12	100.0%	0.0%	100.0%	20%	100%
13	100.0%	0.0%	100.0%	20%	100%
14	100.0%	0.0%	100.0%	20%	100%
15	100.0%	0.0%	100.0%	20%	100%
16	100.0%	0.0%	100.0%	20%	0%
17	100.0%	0.0%	100.0%	20%	0%
18	100.0%	0.0%	100.0%	20%	0%
19	100.0%	0.0%	100.0%	20%	0%
20	100.0%	0.0%	100.0%	20%	0%

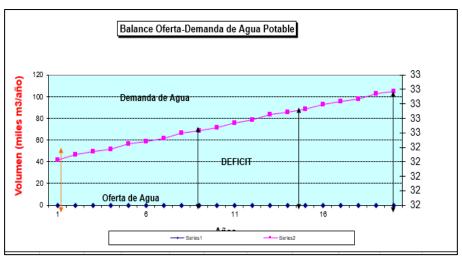
Fuente: Elaboración propia

AÑO	COBERTURA CONEX. %	Nº HAB./FAM.	CONSUMO PER CAPITA (I/hab/dìa)	PERDIDA DE AGUA	
0*	0.0%	4.17	80	50%	
1	100.0%	4.17	80	20%	
2	100.0%	4.17	80	20%	
3	100.0%	4.17	80	20%	
4	100.0%	4.17	80	20%	
5	100.0%	4.17	80	20%	
6	100.0%	4.17	80	20%	
7	100.0%	4.17	80	20%	
8	100.0%	4.17	80	20%	
9	100.0%	4.17	80	20%	
10	100.0%	4.17	80	20%	
11	100.0%	4.17	80	20%	
12	100.0%	4.17	80	20%	
13	100.0%	4.17	80	20%	
14	100.0%	4.17	80	20%	
15	100.0%	4.17	80	20%	
16	100.0%	4.17	80	20%	
17	100.0%	4.17	80	20%	
18	100.0%	4.17	80	20%	
19	100.0%	4.17	80	20%	
20	100.0%	4.17	80	20%	

Fuente: Elaboración propia

RESULTADOS PARA EL SISTEMA DE AGUA POTABLE EN EL CASERÍO URPAY – 04 SECTORES

AÑO	AÑO	POBLACION	COB	ERTURA (%	%)	PO	BLACION SEF	RVIDA (hab)		VIVIENDAS	S SERVIDAS (ur	nidades)	CONEXIONES	y Piletas	CONSUMO DE	AGUA (I/día)	CONSUMO DE A	.gua total		DEMANDA	PRODUCO	CIÓN DE AGUA		VOLUMEN DE REGULACION (*1)
			CONEXIONES	PILETAS	OTROS MEDIOS (*)	POR CONEXIONES	POR PILETAS	TOTAL	%	POR CONEXIONES	POR PILETAS	TOTAL	Nº DE CONEXIONES	Nº DE PILETAS	POR CONEXIÓN	POR PILETA	lt/dia	m3/año	lt/dia	m3/año	lt/seg	Max. Horario (lt/seg)	Max. Diario (lt/seg)	m3
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)=(21)x2.5	(23)=(21)x1.2	(24)
2020	0	859	0.0%	0.0%	100.0%	0	0	0	0.0%	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00	0
2021	1	860	100.0%	0.0%	0.0%	860	0	860	100.0%	206	0	206	206	0	68,800	0	68,800	25,112	86,000	31,390	1.00	2.49	1.19	26
2022	2	862	100.0%	0.0%	0.0%	862	0	862	100.0%	207	0	207	207	0	68,960	0	68,960	25,170	86,200	31,463	1.00	2.49	1.20	26
2023	3	863	100.0%	0.0%	0.0%	863	0	863	100.0%	207	0	207	207	0	69,040	0	69,040	25,200	86,300	31,500	1.00		1.20	26
2024	4	864	100.0%	0.0%	0.0%	864	0	864	100.0%	207	0	207	207	0	69,120	0	69,120	25,229	86,400	31,536	1.00		1.20	
2025	5	866	100.0%	0.0%	0.0%	866	0	866	100.0%	208	0	208	208	0	69,280	0	69,280	25,287	86,600	31,609	1.00		1.20	26
2026	6	867	100.0%	0.0%	0.0%	867	0	867	100.0%	208	0	208	208	0	69,360	0	69,360	25,316	86,700	31,646	1.00		1.20	
2027	7	868	100.0%	0.0%	0.0%	868	0	868	100.0%	208	0	208	208	0	69,440	0	69,440	25,346	86,800	31,682	1.00		1.21	26
2028	8	870	100.0%	0.0%	0.0%	870	0	870	100.0%	209	0	209	209	0	69,600	0	69,600	25,404	87,000	31,755	1.01		1.21	26
2029	9	871	100.0%	0.0%	0.0%	871	0	871	100.0%	209	0	209	209	0	69,680	0	69,680	25,433	87,100	31,792	1.01	2.52	1.21	26
2030	10	872	100.0%	0.0%	0.0%	872	0	872	100.0%	209	0	209	209	0	69,760	0	69,760	25,462	87,200	31,828	1.01	2.52	1.21	26
2031	11	873	100.0%	0.0%	0.0%	873	0	873	100.0%	209	0	209	209	0	69,840	0	69,840	25,492	87,300	31,865	1.01		1.21	26
2032	12	875	100.0%	0.0%	0.0%	875 876	0	875	100.0%	210 210	0	210	210	0	70,000	0	70,000	25,550	87,500	31,938	1.01	2.53		
2033	13	876	100.0%	0.0%	0.0%	876 877	0	876	100.0%	210	0	210	210 210	0	70,080 70,160	0	70,080	25,579	87,600	31,974	1.01 1.02	2.53 2.54	1.22 1.22	
2034 2035	14 15	877 879	100.0% 100.0%	0.0%	0.0%	879	0	877 879	100.0%	210	0	210 211	210	0	70,160	0	70,160 70,320	25,608 25,667	87,700 87,900	32,011 32,084	1.02		1.22	
2036	16	880	100.0%	0.0%	0.0%	880	0	880	100.0%	211	0	211	211	0	70,320	0	70,320	25,696	88,000	32,120	1.02			_
2037	17	882	100.0%	0.0%	0.0%	882	0	882	100.0%	212	0	212	212	0	70,400	0	70,400	25,754	88,200	32,120	1.02			
2037	18	883	100.0%	0.0%	0.0%	883	0	883	100.0%	212	0	212	212	0	70,500	0	70,500	25,784	88,300	32,193	1.02		1.23	
2039	19	884	100.0%	0.0%	0.0%	884	0	884	100.0%	212	0	212	212	0	70,740	0	70,040	25,764	88,400	32,266	1.02	2.55	1.23	27
2039	20	886	100.0%	0.0%	0.0%	886	n	886	100.0%	212	0	212	212	0	70,720	0	70,720	25,871	88,600	32,200	1.02			


Fuente: Elaboración propia

Informacion actual (año cero del proyecto)

OFERTA DEL SISTEMA DE AGUA POTABE

Graficar (miles m3/años)

	C:	Can
	Sin	Con
	Proyecto	Proyecto
1	0	32
3	0	32 32
	0	32
4	0	32
5	0	32
6	0	32
7	0	33
8	0	33
9	0	33
10	0	33
11	0	33
12	0	33
13	0	33
14	0	33
15	0	33
16	0	33
17	0	33
18	0	33
19	0	33
20	0	33

OFERTA DEL AGUA SIN PROYECTO

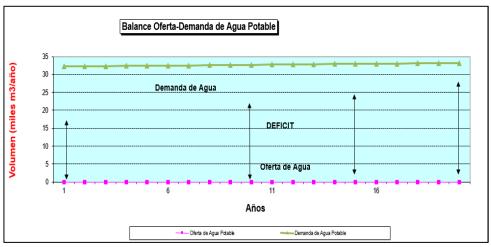
Nº	SISTEMA	LTS/SEG	LITRO/DIA	M3/AÑO
11	SISTEMA	(1)	(2)=(1)*(60*60*24horas)	(3)=(2)*365/1000
1	Fuente 04 Sectores acumulada	2.42	209088	76317.12
	TOTAL	2.42		76317.12

OFERTA DEL AGUA CON PROYECTO ALTERNATIVA UNICA

Nº	SISTEMA	LTS/SEG	LITRO/DIA	M3/AÑO
11	SISTEMA	(1)	(2)=(1)*(60*60*24horas)	(3)=(2)*365/1000
1	Fuente 04 Sectores acumulada	2.42	209088	76317.12
	TOTAL	2.42	209088	76317.12

RESULTADOS PARA EL SISTEMA DE AGUA POTABLE EN EL CASERÍO URPAY – 04 SECTORES (max H – max D)

AÑO	AÑO	POBLACION	CC	OBERTURA (%)	PO	BLACION SEF	RVIDA (hab)		VIVIENDA	S SERVIDAS (un	idades)	CONEXIONES \	/ PILETAS	CONSUMO DE AGUA (I/día) CONSUMO DE AGUA TOTAL		AGUA TOTAL	DEMANDA PRODUCCIÓN DE AGUA		VOLUMEN DE REGULACION (*1)	
			CONEXIONES	PILETAS	OTROS MEDIOS (*)	POR CONEXIONES	POR PILETAS	TOTAL	%	POR CONEXIONES	POR PILETAS	TOTAL	Nº DE CONEXIONES	Nº DE PILETAS	POR CONEXIÓN	POR PILETA	lt/dia	m3/año	lt/dia	m3/año	m3
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)
2020	0	859	0.0%	0.0%	100.0%	0	0	0	0.0%	0	0	0	0	0	0	0	0	0	0	0	0
2021	1	860	100.0%	0.0%	0.0%	860	0	860	100.0%	206	0	206	206	0	68,800	0	68,800	25,112	86,000	31,390	17
2022	2	862	100.0%	0.0%	0.0%	862	0	862	100.0%	207	0	207	207	0	68,960	0	68,960	25,170	86,200	31,463	17
2023	3	863	100.0%	0.0%	0.0%	863	0	863	100.0%	207	0	207	207	0	69,040	0	69,040	25,200	86,300	31,500	17
2024	4	864	100.0%	0.0%	0.0%	864	0	864	100.0%	207	0	207	207	0	69,120	0	69,120	25,229	86,400	31,536	17
2025	5	866	100.0%	0.0%	0.0%	866	0	866	100.0%	208	0	208	208	0	69,280	0	69,280	25,287	86,600	31,609	17
2026	6	867	100.0%	0.0%	0.0%	867	0	867	100.0%	208	0	208	208	0	69,360	0	69,360	25,316	86,700	31,646	17
2027	7	868	100.0%	0.0%	0.0%	868	0	868	100.0%	208	0	208	208	0	69,440	0	69,440	25,346	86,800	31,682	17
2028	8	870	100.0%	0.0%	0.0%	870	0	870	100.0%	209	0	209	209	0	69,600	0	69,600	25,404	87,000	31,755	17
2029	9	871	100.0%	0.0%	0.0%	871	0	871	100.0%	209	0	209	209	0	69,680	0	69,680	25,433	87,100	31,792	17
2030	10	872	100.0%	0.0%	0.0%	872	0	872	100.0%	209	0	209	209	0	69,760	0	69,760	25,462	87,200	31,828	17
2031	11	873	100.0%	0.0%	0.0%	873	0	873	100.0%	209	0	209	209	0	69,840	0	69,840	25,492	87,300	31,865	17
2032	12	875	100.0%	0.0%	0.0%	875	0	875	100.0%	210	0	210	210	0	70,000	0	70,000	25,550	87,500	31,938	18
2033	13	876	100.0%	0.0%	0.0%	876	0	876	100.0%	210	0	210	210	0	70,080	0	70,080	25,579	87,600	31,974	18
2034	14	877	100.0%	0.0%	0.0%	877	0	877	100.0%	210	0	210	210	0	70,160	0	70,160	25,608	87,700	32,011	18
2035	15	879	100.0%	0.0%	0.0%	879	0	879	100.0%	211	0	211	211	0	70,320	0	70,320	25,667	87,900	32,084	18
2036	16	880	100.0%	0.0%	0.0%	880	0	880	100.0%	211	0	211	211	0	70,400	0	70,400	25,696	88,000	32,120	18
2037	17	882	100.0%	0.0%	0.0%	882	0	882	100.0%	212	0	212	212	0	70,560	0	70,560	25,754	88,200	32,193	18
2038	18	883	100.0%	0.0%	0.0%	883	0	883	100.0%	212	0	212	212	0	70,640	0	70,640	25,784	88,300	32,230	18
2039	19	884	100.0%	0.0%	0.0%	884	0	884	100.0%	212	0	212	212	0	70,720	0	70,720	25,813	88,400	32,266	18
2040	20	886	100.0%	0.0%	0.0%	886	0	886	100.0%	212	0	212	212	0	70,880	0	70,880	25,871	88,600	32,339	18


Fuente: Elaboración propia

Informacion actual (año cero del proyecto

OFERTA DEL SISTEMA DE AGUA POTABLE

Graficar (miles m3/año)

	a:	~
	Sin	Con
	Proyecto	Proyecto
1	0	32
2 3	0	32
3	0	32 32
4	0	32
5	0	32
6	0	32
7	0	33
8	0	33
9	0	33
10	0	33
11	0	33
12	0	33
13	0	33
14	0	33
15	0	33
16	0	33
17	0	33
18	0	33
19	0	33
20	0	33

Año	Oferta	Demand	Superávit	
	(1/s)	Max. Diario	Bombeo	(l/s)
2007	10.00	4.19	2.18	7.82
2012	10.00	6.06	3.15	3.94
2017	10.00	7.18	3.73	2.82
2022	10.00	8.08	4.20	1.92

RESULTADOS DE UNIDADES BASICAS DE SANEAMIENTO DEL CASERIO DE URPAY - 04 SECTORES

AÑO	POBLACION	COBERTURA DE SANEAMIENT O CON CONEXIONES	POBLACION SERVIDAB(hab)	Nº HAB./FAMIL IA	VIVIENDAS SERVIDAS (UND)	Nº DE CONEXIONES REQUERIDAS		
		(%)	(4)=(2)*(3)		(6)=(4)/(5)	TOTAL (7)=(6)	INCREMENTAL (8)=Nº CONEXIONES AÑO t - Nº CONEXIONES AÑO t-1	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
0*	859	100%	859.02	4.17	206	206	206	
1	860	100%	860	4.17	206	206	0	
2	862	100%	862	4.17	207	207	0	
3	863	100%	863	4.17	207	207	0	
4	864	100%	864	4.17	207	207	0	
5	866	100%	866	4.17	208	208	0	
6	867	100%	867	4.17	208	208	0	
7	868	100%	868	4.17	208	208	0	
8	870	100%	870	4.17	209	209	0	
9	871	100%	871	4.17	209	209	0	
10	872	100%	872	4.17	209	209	0	

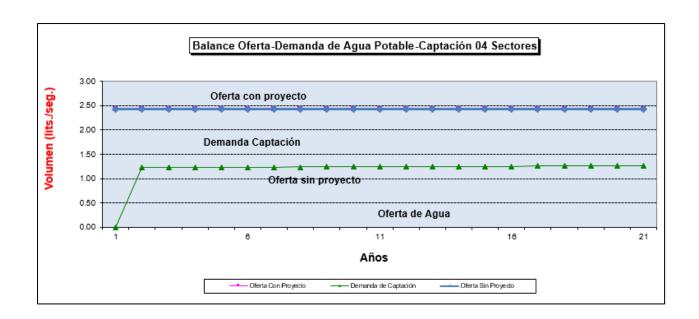
Fuente: Elaboración propia

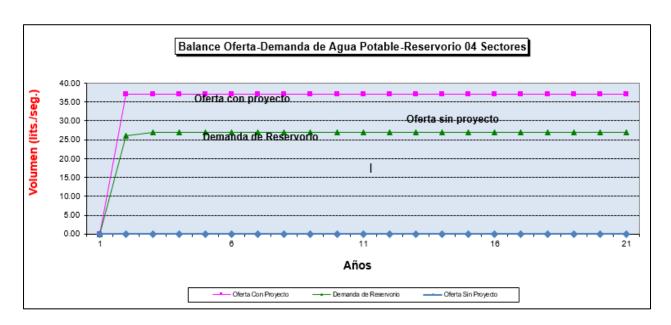
BALANCE OFERTA – DEMANDA DE UNIDADES BÁSICAS DE SANEAMIENTO DEL CASERÍO DE URPAY - 04 SECTORES

AÑO	OFERTA Cantidad	DEMANDA Unidad	LOCALES Unidad	DÉFICIT Unidad
AÑO 0:2020	0	199	7	-206
AÑO 20:2030	0	202	7	-209

Fuente: Elaboración propia

BALANCE OFERTA DEMANDA DE AGUA POTABLE CASERIO DE URPAY - 04 SECTORES


		CA	PTACIC	N			RESI	ERVORI	O	
AÑO	DEMANDA Max. Diario	OFERTA l/s		OFE	ANCE RTA- NDA l/s	DEMANDA m3	OFERTA m3		BALANCE OFERTA- DEMANDA m3	
	(lt/seg)	Sin	Con	Sin	Con	1115	Sin	Con	Sin	Con
		Proyct.	Proyct.	Proyct.	Proyct.		Proyct.	Proyct.	Proyet.	Proyct.
0	0.00	2.42	2.42	2.42	2.42	0.00	0.00			
1	1.23	2.42	2.42	1.19	1.19	26.00	0.00	37.00	-26.00	11.00
2	1.23	2.42	2.42	1.19	1.19	27.00	0.00	37.00	-27.00	10.00
3	1.23	2.42	2.42	1.19	1.19	27.00	0.00	37.00	-27.00	10.00
4	1.23	2.42	2.42	1.19	1.19	27.00	0.00	37.00	-27.00	10.00
5	1.23	2.42	2.42	1.19	1.19	27.00	0.00	37.00	-27.00	10.00
6	1.24	2.42	2.42	1.18	1.18	27.00	0.00	37.00	-27.00	10.00
7	1.24	2.42	2.42	1.18	1.18	27.00	0.00	37.00	-27.00	10.00
8	1.24	2.42	2.42	1.18	1.18	27.00	0.00	37.00	-27.00	10.00
9	1.24	2.42	2.42	1.18	1.18	27.00	0.00	37.00	-27.00	10.00
10	1.24	2.42	2.42	1.18	1.18	27.00	0.00	37.00	-27.00	10.00
11	1.25	2.42	2.42	1.17	1.17	27.00	0.00	37.00	-27.00	10.00
12	1.25	2.42	2.42	1.17	1.17	27.00	0.00	37.00	-27.00	10.00
13	1.25	2.42	2.42	1.17	1.17	27.00	0.00	37.00	-27.00	10.00
14	1.25	2.42	2.42	1.17	1.17	27.00	0.00	37.00	-27.00	10.00
15	1.25	2.42	2.42	1.17	1.17	27.00	0.00	37.00	-27.00	10.00
16	1.26	2.42	2.42	1.16	1.16	27.00	0.00	37.00	-27.00	10.00
17	1.26	2.42	2.42	1.16	1.16	27.00	0.00	37.00	-27.00	10.00
18	1.26	2.42	2.42	1.16	1.16	27.00	0.00	37.00	-27.00	10.00
19	1.26	2.42	2.42	1.16	1.16	27.00	0.00	37.00	-27.00	10.00
20	1.26	2.42	2.42	1.16	1.16	27.00	0.00	37.00	-27.00	10.00


Fuente: Elaboración propia

Nota:

Si cumplió:

CAPTACIÓN	RESERVORIO
OFERTA > DEMANDA	OFERTA > DEMANDA
2.42 > 1.26	37 > 27

TRAMO I					H	-W				
PUNTO	COTA	LONGITUD	LONGITUD A.	ACCESORIOS	CAUDAL	DIAMET. MIN	DIAMET. MAX	AMET.(min 3/	VELOCIDAD	Hf Principal
1	3508.7	20	0		1.72					
2	3499.6	20	20		1.72	3/4	1	1	0.55	1.79
3	3491.1	20	40		1.72	3/4	1	1	0.55	1.79
4	3482	20	60		1.72	3/4	1	1	0.55	1.79
5	3474	20	80		1.72	3/4	1	1	0.55	1.79
6	3464.2	20	100		1.72	3/4	1	1	0.55	1.79
7	3458.5	20	120		1.72	3/4	1	1	0.55	1.79
8	3451.2	20	140		1.72	3/4	1	1	0.55	1.79
9	3446	20	160		1.72	3/4	1	1	0.55	1.79
10	3443.8	20	180		1.72	3/4	1	1	0.55	1.79
11	3436.7	20	200		1.72	3/4	1	1	0.55	1.79
12	3426.7	20	220		1.72	3/4	1	1	0.55	1.79
13	3426.5	20	240		1.72	3/4	1	1	0.55	1.79
14	3418.5	20	260		1.72	3/4	1	1	0.55	1.79
15	3411	20	280		1.72	3/4	1	1	0.55	1.79
16	3403.9	20	300		1.72	3/4	1	1	0.55	1.79
17	3397.5	20	320		1.72	3/4	1	1	0.55	1.79
18	3397	20	340		1.72	3/4	1	1	0.55	1.79
19	3397.2	20	360		1.72	3/4	1	1	0.55	1.79
20	3394.2	20	380		1.72	3/4	1	1	0.55	1.79
21	3391	20	400		1.72	3/4	1	1	0.55	1.79
22	3388.5	20	420		1.72	3/4	1	1	0.55	1.79
23	3381.8	20	440		1.72	3/4	1	1	0.55	1.79
24	3374.2	20	460		1.72	3/4	1	1	0.55	1.79
25	3374	20	480		1.72	3/4	1	1	0.55	1.79

TRAMO II				H	-W				
26	3374.5	20	500	1.72	3/4	1	1	0.55	1.79
27	3363.5	20	520	1.72	3/4	1	1	0.55	1.79
28	3362.1	20	540	1.72	3/4	1	1	0.55	1.79
29	3360	20	560	1.72	3/4	1	1	0.55	1.79
30	3356.5	20	580	1.72	3/4	1	1	0.55	1.79
31	3352.2	20	600	1.72	3/4	1	1	0.55	1.79
32	3347.7	20	620	1.72	3/4	1	1	0.55	1.79
33	3346.8	20	640	1.72	3/4	1	1	0.55	1.79
34	3341.1	20	660	1.72	3/4	1	1	0.55	1.79
35	3335.6	20	680	1.72	3/4	1	1	0.55	1.79
36	3327.1	20	700	1.72	3/4	1	1	0.55	
37	3318.2	20	720	1.72	3/4	1	1	0.55	
38	3310	20	740	1.72	3/4	1	1	0.55	
39	3308.2	20	760	1.72	3/4	1	1	0.55	1.79
40	3305.5	20	780	1.72	3/4	1	1	0.55	1.79
41	3301.1	20	800	1.72	3/4	1	1	0.55	1.79
42	3297.5	20	820	1.72	3/4	1	1	0.55	
43	3297.1	20	840	1.72	3/4	1	1	0.55	
44	3296.5	20	860	1.72	3/4	1	1	0.55	
45	3292.2	20	880	1.72	3/4	1	1	0.55	
46	3287.2	20	900	1.72	3/4	1	1	0.55	
47	3283.6	20	920	1.72	3/4	1	1	0.55	
48	3278.3	20	940	1.72	3/4	1	1	0.55	
49	3279.1	20	960	1.72	3/4	1	1	0.55	
50	3275.1	20	980	1.72	3/4	1	1	0.55	
51	3273.5	20	1000	1.72	3/4	1	1	0.55	
52	3272.5	20	1020	1.72	3/4	1	1	0.55	
53	3270.4	20	1040	1.72	3/4	1	1	0.55	
54	3270.1	20	1060	1.72	3/4	1	1	0.55	
55	3276.2	20	1080	1.72	3/4	1	1	0.55	
56	3277.5	20	1100	1.72	3/4	1	1	0.55	
57	3277.5	20	1120	1.72	3/4	1	1	0.55	
58	3276.4	20	1140	1.72	3/4	1	1	0.55	
59	3274.8	20	1160	1.72	3/4	1	1	0.55	
60	3273.2	20	1180	1.72	3/4	1	1	0.55	75 .79

TRAMO III										
61	3273	20	1200	1.	72	3/4	1	1	0.55	1.79
62	3268.8	20	1220	1.	72	3/4	1	1	0.55	1.79
63	3261.5	20	1240	1.	72	3/4	1	1	0.55	1.79
64	3253.2	20	1260	1.	72	3/4	1	1	0.55	1.79
65	32418	20	1280	1.	72	3/4	1	1	0.55	1.79
66	3235.2	20	1300	1.	72	3/4	1	1	0.55	1.79
67	3231	20	1320	1.	72	3/4	1	1	0.55	1.79
68	3224	20	1340	1.		3/4	1	1		1.79
69	3215.9	20	1360	1.	72	3/4	1	1	0.55	1.79
70	3211.6	20	1380		72	3/4	1	1		1.79
71	3209.7	20	1400	1.	72	3/4	1	1	0.55	1.79
72	3208.1	20	1420	1.		3/4	1	1		1.79
73	3207.3	20	1440	1.	72	3/4	1	1	0.55	1.79
74	3206.9	20	1460		72	3/4	1	1		1.79
75	3207.8	20	1480	1.		3/4	1	1		1.79
76	3207.5	20	1500	1.		3/4	1	1		1.79
77	3207.1	20	1520	1.		3/4	1	1		1.79
78	3206.8	20	1540		72	3/4	1	1		1.79
79	3206.7	20	1560		72	3/4	1	1	0.55	1.79
80	3207.3	20	1580		72	3/4	1	1		1.79
81	3209.1	20	1600		72	3/4	1	1		1.79
82	3215.8	20	1620	1.		3/4	1	1		1.79
83	3221.1	20	1640		72	3/4	1	1		1.79
84	3221.2	20	1660		72	3/4	1	1		1.79
85	3221.4	20	1680		72	3/4	1	1	0.55	1.79
86	3221.6	20	1700		72	3/4	1	1	0.55	1.79
87	3221.8	20	1720	1.		3/4	1	1		1.79
88	3221.9	20	1740	1.	72	3/4	1	1	0.55	1.79
89	3232.7	20	1760		72	3/4	1	1	0.55	1.79
90	3230.8	20	1780		72	3/4	1	1		1.79
91	3228.1	20	1800	1.	72	3/4	1	1	0.55	1.79
92	3231.5	20	1820	1.		3/4	1	1		1.79
93	3233.5	20	1840	1.	72	3/4	1	1	0.55	1.79
94	3222.1	20	1860		72	3/4	1	1		1.79
95	3219.7	20	1880		72	3/4	1	1		1.79
96	3218.3	20	1900		72	3/4	1	1		1.79
97	3217.3	20	1920	1.	72	3/4	1	1	0.55	1.79
98	3216.8	20	1940	1.	72	3/4	1	1	0.55	1.79
99	3218.6	20	1960		72	3/4	1	1	0.55	1.79
100	3220.4	20	1980		72	3/4	1	1		1.79
101	322.9	20	2000	1.	72	3/4	1	1	0.55	1.79
102	3223.3	20	2020	1.		3/4	1	1		1.79
103	3220.1	20	2040		72	3/4	1	1		76 1.79
104	3219.6	20	2060		72	3/4	1	1		70 1.79
105	3221.7	20	2080		72	3/4	1	1	0.55	1.79

TRAMO IV				Н	-W				
106	3272	20	2100	1.72	3/4	1	1	0.55	1.79
107	3263.1	20	2120	1.72	3/4	1	1	0.55	1.79
108	3255.5	20	2140	1.72	3/4	1	1	0.55	1.79
109	3236.2	20	2160	1.72	3/4	1	1	0.55	1.79
110	3232.7	20	2180	1.72	3/4	1	1	0.55	1.79
111	3231.9	20	2200	1.72	3/4	1	1	0.55	1.79
112	3226.5	20	2220	1.72	3/4	1	1	0.55	1.79
113	3224.1	20	2240	1.72	3/4	1	1	0.55	1.79
114	3221.5	20	2260	1.72	3/4	1	<u>.</u> 1	0.55	1.79
	0			· · · · · · ·	<u> </u>	• 1	<u> </u>	0.00	
TRAMO V					-W				
115	3275	20	2280	1.72	3/4	1	1	0.55	1.79
116	3265.8	20	2300	1.72	3/4	1	1	0.55	1.79
117	3219	20	2320	1.72	3/4	1	1	0.55	1.79
118	3181	20	2340	1.72	3/4	1	1	0.55	1.79
119	3186.9	20	2360	1.72	3/4	1	1	0.55	1.79
120	3188.4	20	2380	1.72	3/4	1	1	0.55	1.79
121	3189.1	20	2400	1.72	3/4	1	1	0.55	1.79
122	3190.5	20	2420	1.72	3/4	1	1	0.55	1.79
123	3190.8	20	2440	1.72	3/4	1	1	0.55	1.79
124	3189.5	20	2460	1.72	3/4	1	1	0.55	1.79
125	3200.5	20	2480	1.72	3/4	1	1	0.55	1.79
126	3211	20	2500	1.72	3/4	1	1	0.55	1.79
127	3209	20	2520	1.72	3/4	1	1	0.55	1.79
128	3186	20	2540	1.72	3/4	1	1	0.55	1.79
129	3182.5	20	2560	1.72	3/4	1	1	0.55	1.79
130	3190.5	20	2580	1.72	3/4	1	1	0.55	1.79
131	3189.2	20	2600	1.72	3/4	1	1	0.55	1.79
132	3184.8	20	2620	1.72	3/4	1	1	0.55	1.79
133	3181.9	20	2640	1.72	3/4	1	1	0.55	1.79
134	3185	20	2660	1.72	3/4	1	1	0.55	1.79
135	3182	20	2680	1.72	3/4	1	1	0.55	1.79
136	3175	20	2700	1.72	3/4	1	1	0.55	1.79
137	3156.9	20	2720	1.72	3/4	1	1	0.55	1.79
138	3156.8	20	2740	1.72	3/4	1	1	0.55	1.79
139	3150.9	20	2760	1.72	3/4	1	1	0.55	1.79
140	3142	20	2780	1.72 1.72	3/4 3/4	1	1	0.55	1.79
141	3132.5	20	2800			1	1	0.55	1.79
142	3124	20	2820	1.72	3/4	1	1	0.55	1.79
143	3118.2	20	2840	1.72	3/4 3/4	1	<u>1</u>	0.55	1.79
144	3109.2	20	2860	1.72		1	-	0.55	1.79
145	3092	20	2880	1.72	3/4	1	1	0.55	1.79

TRAMO VI				H	-W				
146	3157.5	20	2900	1.72	3/4	1	1	0.55	1.79
147	3152	20	2920	1.72	3/4	1	1	0.55	1.79
148	3138.8	20	2940	1.72	3/4	1	1	0.55	1.79
149	3125	20	2960	1.72	3/4	1	1	0.55	1.79
150	3128	20	2980	1.72	3/4	1	1	0.55	1.79
151	3055	20	3000	1.72	3/4	1	1	0.55	1.79
152	3010.5	20	3020	1.72	3/4	1	1	0.55	1.79
153	3989	20	3040	1.72	3/4	1	1	0.55	1.79
154	3987	20	3060	1.72	3/4	1	1	0.55	1.79
155	3947.8	20	3080	1.72	3/4	1	1	0.55	1.79
156	3939	20	3100	1.72	3/4	1	1	0.55	1.79
157	2005	20	3120	1.72	3/4	1	1	0.55	1.79
CHANCHACAP					-W				
158	3110.5	20	3140	1.72	3/4	1	1	0.55	1.79
159		20	3160	1.72	3/4	1	1	0.55	1.79
	3106.2								
160	3087	20	3180	1.72	3/4	1	1	0.55	1.79
161	3099	20	3200	1.72	3/4	1	1	0.55	1.79
162	3102	20	3220	1.72	3/4	1	1	0.55	1.79
163	3099.5	20	3240	1.72	3/4	1	1	0.55	1.79
164	3096	20	3260	1.72	3/4	1	1	0.55	1.79
165	3089.5	20	3280	1.72	3/4	1	1	0.55	1.79
166	3084.5	20	3300	1.72	3/4	1	1	0.55	1.79
167	3083	20	3320	1.72	3/4	1	1	0.55	1.79
168	3081.2	20	3340	1.72	3/4	1	1	0.55	1.79
169	3081	20	3360	1.72	3/4	1	1	0.55	1.79
170	3068.2	20	3380	1.72	3/4	1	1	0.55	1.79
171	3060	20	3400	1.72	3/4	1	1	0.55	1.79
172	3063.6	20	3420	1.72	3/4	1	1	0.55	1.79
173	3055	20	3440	1.72	3/4	1	1	0.55	1.79
174	3068	20	3460	1.72	3/4	1	1	0.55	1.79
175	3059	20	3480	1.72	3/4	1	1	0.55	1.79
176	3055.5	20	3500	1.72	3/4	1	1	0.55	1.79
177	3059	20	3520	1.72	3/4	1	1	0.55	1.79
178	3054	20	3540	1.72	3/4	1	1	0.55	1.79
179	3059	20	3560	1.72	3/4	1	1	0.55	1.79
180	3049.8	20	3580	1.72	3/4	1	1	0.55	1.79

3.5.4. Diseño de reservorios

3.5.4.1. Reservorio 01 de 15m3

DIMENSIONAMIENTO DEL TANQUE

DESCRIPCIÓN	VALOR
Diámetro pre dimensionado de tanque (m)	3.37
Altura pre dimensionada de agua en el tanque	1.68
Diámetro interior adoptado	3.40
Altura de agua adoptada	1.75
Volumen resultante de reservorio (m3)	15.89
Chequeo de volumen resultante	OK
Borde libre	0.25

<u>DISEÑO DE PAREDES</u>

DESCRIPCIÓN	VALOR
Fuerza de tensión - Anillo inferior (Kg)	4,820.33
Fuerza de tensión - Anillo superior (Kg)	1,301.56
Resistencia del C° a usar (Kg/cm2)	210
Resistencia del C° a la tracción	13.82
Espesor de pared pre dimensionado en cm.	1.99
Espesor de pared adoptado (cms)	12
Superficie del concreto	206.07
Chequeo del espesor de pared adoptado	OK
Esfuerzo de trabajo del acero fs	1890.00
ANILLO INFERIOR	
Diámetro de varilla a utilizar	3/8
Área de la varilla a utilizar	0.71
Área de acero del anillo inferior Así (cm2)	2.55
Espaciamiento pre dimensionado (cms)	24.36
Espaciamiento máximo (cms)	30.00
Espaciamiento adoptado (cm)	24
ANILLO SUPERIOR	
Área de acero del anillo superior Así (cm2)	0.69
Espaciamiento pre dimensionado (cms)	90.21
Espaciamiento máximo (cms)	15.00
Espaciamiento adoptado (cms)	15
REFUERZO VERTICAL	
CUANTIA DE DISEÑO =	0.0018
Área del acero vertical (cm2)	2.16
Espaciamiento de las varillas verticales	15

DISEÑO DEL TECHO DEL TANQUE

DESCRIPCIÓN		VALOR
Longitud de voladizo de losa (cms)		10
PREDIMENSIONAMIENTO DE ESPESOR DE LOSA		
NO DEBE SER INFERIOR A:		8.33
Valor mínimo de espesor de losa		4.11
Valor máximo de espesor de losa		10.37
Valor pre dimensionado de espesor de losa		7.24
Espesor adoptado		10.0
Carga muerta (Kg/m2)		273.75
Carga viva (Kg/m2)		200
Carga última (Kg/m2)		584.95
Momento actuante (Kg-m)		281.75
I =		8,333.33
Deflexión máxima actuante por flexión (cms)		-1.98
Deflexión máxima permitida por flexión (cms)		1.89
Chequeo del espesor por flexión		OK
Carga cortante (Kg)		1,143.57
CANTO EFECTIVO 01 =		_,_ ::::::
CUNT.MAX=		0.02
d1 (cms) =		2.40
RECUB d' =		2
d2 (cms)=		8.00
CALCULO DEL CANTO EFECTIVO =		
d (cms)=		8.00
Cortante Actuante Nominal (Kg/m2) =		1,089.75
Esfuerzo cortante (Kg/cm2) =		1.60
Esfuerzo cortante crítico (Kg/cm2) =		7.68
Chequeo de espesor por corte		OK
CALCULO DEL AREA DE ACERO (As =)		
	ı =	0.22
0.	22	0.22
Diámetro de la varilla a utilizar		3/8
Área de la varilla a utilizar		0.71
	7 =	4,200
CALCULO DE a EL MAS REAL =		0.22
CALCULO DE AREA DE ACERO =		0.94
Acero mínimo por tracción (cm2)		2.67
AREA DE ACERO EN AMBOS SENTIDOS =		2.67
Espaciamiento pre dimensionado de varillas		27
Espaciamiento máximo de varillas		15
Espaciamiento adoptado		15

$\frac{\text{DISE}\tilde{\text{NO}} \text{ DEL CIMIENTO CORRIDO DE LA PARED}}{\text{DEL TANQUE}}$

DESCRIPCIÓN	VALOR
Ancho de vereda de protección (m)	0.5
METRADO DE CARGAS	
	4.64
Carga muerta (Kg/ml.)	1,019.00
Carga viva (Kg/ml.)	200.00
CARGA TOTAL =	1,766.60
Capacidad portante del terreno (Kg/cm2)	1.19
Ancho pre dimensionado de cimiento (m)	0.17
Ancho mínimo de cimiento (m)	0.20
Ancho adoptado de cimiento (m)	0.20
Peralte del cimiento (m)	0.61
EL PERALTE MINIMO SERA =	
Esfuerzo cortante Kg/cm2	12.32
Peralte pre dimensionado	7.71
Peralte adoptado (cms)	28
Diámetro de la varilla a utilizar	3/8
Área de la varilla a utilizar	0.71
Área de acero con cuantía mínima	2.57
Distribución de acero de cimiento (cms)	28
Acero por temperatura	0.64
Distribución del acero por temperatura (cms)	7

DISEÑO DE LA LOSA DE FONDO

DESCRIPCIÓN	VALOR
Espesor de losa (=espesor de muro)	12.00
Área de acero mínimo (cm2)	2.16
Varilla a utilizar	3/8
Distribución pre dimensionada (cms)	32.87
Distribución máxima (cms)	36
Distribución adoptada (cms)	15
- , ,	

3.5.4.2. Reservorio 02 de 20m3

<u>DIMENSIONAMIENTO DEL TANQUE</u>

DESCRIPCIÓN	VALOR
Diámetro pre dimensionado de tanque (m)	3.71
Altura pre dimensionada de agua en el tanque	1.85
Diámetro interior adoptado	3.75
Altura de agua adoptada	1.85
Volumen resultante de reservorio (m3)	20.43
Chequeo de volumen resultante	OK
Borde libre	0.25

DISEÑO DE PAREDES

DESCRIPCIÓN	VALOR
Fuerza de tensión - Anillo inferior (Kg)	6,440.53
Fuerza de tensión - Anillo superior (Kg)	1,604.30
Resistencia del C° a usar (Kg/cm2)	210
Resistencia del C° a la tracción	13.82
Espesor de pared pre dimensionado en cm.	2.52
Espesor de pared adoptado (cms)	12
Superficie del concreto	275.34
Chequeo del espesor de pared adoptado	OK
Esfuerzo de trabajo del acero fs	1890.00
ANILLO INFERIOR	
Diámetro de varilla a utilizar	3/8
Área de la varilla a utilizar	0.71
Área de acero del anillo inferior Así (cm2)	3.41
Espaciamiento pre dimensionado (cms)	19.27
Espaciamiento máximo (cms)	30.00
Espaciamiento adoptado (cm)	19
ANILLO SUPERIOR	
Área de acero del anillo superior Así (cm2)	0.85
Espaciamiento pre dimensionado (cms)	77.37
Espaciamiento máximo (cms)	15.00
Espaciamiento adoptado (cms)	15
REFUERZO VERTICAL	
CUANTIA DE DISEÑO =	0.0018
Área del acero vertical (cm2)	2.16
Espaciamiento de las varillas verticales	15
_	

DISEÑO DEL TECHO DEL TANQUE

DESCRIPCIÓN		VALOR
Longitud de voladizo de losa (cms)		10
PREDIMENSIONAMIENTO DE ESPESOR DE		
LOSA		
NO DEBE SER INFERIOR A:		9.19
Valor mínimo de espesor de losa		5.04
Valor máximo de espesor de losa		11.44
Valor pre dimensionado de espesor de losa		8.24
Espesor adoptado		10.0
Carga muerta (Kg/m2)		297.81
Carga viva (Kg/m2)		200
Carga última (Kg/m2)		618.63
Momento actuante (Kg-m)		362.48
I =		8,333.33
Deflexión máxima actuante por flexión (cms)		-1.66
Deflexión máxima permitida por flexión (cms)		2.08
Chequeo del espesor por flexión		OK
Carga cortante (Kg)		1,333.93
CANTO EFECTIVO 01 =		
CUNT.MAX=		0.02
d1 (cms) =		2.72
RECUB d' =		2
d2 (cms)=		8.00
CALCULO DEL CANTO EFECTIVO =		
d (cms)=		8.00
Cortante Actuante Nominal (Kg/m2) =		1,277.01
Esfuerzo cortante (Kg/cm2) =		1.88
Esfuerzo cortante crítico (Kg/cm2) =		7.68
Chequeo de espesor por corte		OK
CALCULO DEL AREA DE ACERO (As =)		
	a =	0.29
0	.29	0.29
Diámetro de la varilla a utilizar		3/8
Área de la varilla a utilizar		0.71
f	y =	4,200
CALCULO DE a EL MAS REAL =		0.29
CALCULO DE AREA DE ACERO =		1.22
Acero mínimo por tracción (cm2)		2.67
AREA DE ACERO EN AMBOS SENTIDOS =		2.67
Espaciamiento pre dimensionado de varillas		27
Espaciamiento máximo de varillas		15
Espaciamiento adoptado		15

DISEÑO DEL CIMIENTO CORRIDO DE LA PARED DEL TANQUE

DESCRIPCIÓN	VALOR
Ancho de vereda de protección (m)	0.5
METRADO DE CARGAS	
	4.99
Carga muerta (Kg/ml.)	1,057.80
Carga viva (Kg/ml.)	200.00
CARGA TOTAL =	1,820.92
Capacidad portante del terreno (Kg/cm2)	1.19
Ancho pre dimensionado de cimiento (m)	0.18
Ancho mínimo de cimiento (m)	0.20
Ancho adoptado de cimiento (m)	0.20
Peralte del cimiento (m)	0.63
EL PERALTE MINIMO SERA =	
Esfuerzo cortante Kg/cm2	12.32
Peralte pre dimensionado	7.71
Peralte adoptado (cms)	28
Diámetro de la varilla a utilizar	3/8
Área de la varilla a utilizar	0.71
Área de acero con cuantía mínima	2.57
Distribución de acero de cimiento (cms)	28
Acero por temperatura	0.64
Distribución del acero por temperatura (cms)	7

DISEÑO DE LA LOSA DE FONDO

DESCRIPCIÓN	VALOR
Espesor de losa (=espesor de muro)	12.00
Área de acero mínimo (cm2)	2.16
Varilla a utilizar	3/8
Distribución pre dimensionada (cms)	32.87
Distribución máxima (cms)	36
Distribución adoptada (cms)	15
Distribucion adoptada (cms)	15

3.5.4.3. Reservorio 03 de 7m3

DIMENSIONAMIENTO DEL TANQUE

DESCRIPCIÓN	VALOR
Diámetro pre dimensionado de tanque (m)	2.61
Altura pre dimensionada de agua en el tanque	1.31
Diámetro interior adoptado	2.60
Altura de agua adoptada	1.35
Volumen resultante de reservorio (m3)	7.17
Chequeo de volumen resultante	OK
Borde libre	0.25

<u>DISEÑO DE PAREDES</u>

DESCRIPCIÓN	VALOR
Fuerza de tensión - Anillo inferior (Kg)	2,217.73
Fuerza de tensión - Anillo superior (Kg)	592.31
Resistencia del C° a usar (Kg/cm2)	175
Resistencia del C° a la tracción	12.62
Espesor de pared pre dimensionado en cm.	1.30
Espesor de pared adoptado (cms)	12
Superficie del concreto	93.78
Chequeo del espesor de pared adoptado	OK
Esfuerzo de trabajo del acero fs	1890.00
ANILLO INFERIOR	
Diámetro de varilla a utilizar	3/8
Área de la varilla a utilizar	0.71
Área de acero del anillo inferior Así (cm2)	1.17
Espaciamiento pre dimensionado (cms)	40.84
Espaciamiento máximo (cms)	30.00
Espaciamiento adoptado (cm)	30
ANILLO SUPERIOR	
Área de acero del anillo superior Así (cm2)	0.31
Espaciamiento pre dimensionado (cms)	152.92
Espaciamiento máximo (cms)	15.00
Espaciamiento adoptado (cms)	15
REFUERZO VERTICAL	
CUANTIA DE DISEÑO =	0.0018
Área del acero vertical (cm2)	2.16
Espaciamiento de las varillas verticales	15

DISEÑO DEL TECHO DEL TANQUE

DESCRIPCIÓN	VALOR
Longitud de voladizo de losa (cms)	10
PREDIMENSIONAMIENTO DE ESPESOR DE LOSA	
Valor mínimo de espesor de losa	1.96
Valor máximo de espesor de losa	7.93
Valor pre dimensionado de espesor de losa	4.95
Espesor adoptado	10.0
Carga muerta (Kg/m2)	218.75
Carga viva (Kg/m2)	200
Carga última (Kg/m2)	507.95
Momento actuante (Kg-m)	143.07
I =	8,333.33
Deflexión máxima actuante por flexión (cms)	-2.36
Deflexión máxima permitida por flexión (cms)	1.44
Chequeo del espesor por flexión	OK
Carga cortante (Kg)	759.38
CANTO EFECTIVO 01 =	
CUNT.MAX=	0.01
d1 (cms) =	1.87
RECUB d' =	2
d2 (cms)=	8.00
CALCULO DEL CANTO EFECTIVO =	
d (cms)=	8.00
Cortante Actuante Nominal (Kg/m2) =	712.65
Esfuerzo cortante (Kg/cm2) =	1.05
Esfuerzo cortante crítico (Kg/cm2) =	7.01
Chequeo de espesor por corte	OK
CALCULO DEL AREA DE ACERO (As =)	
Diámetro de la varilla a utilizar	3/8
Área de la varilla a utilizar	0.71
Espaciamiento pre dimensionado de varillas	27
Espaciamiento máximo de varillas	15
Espaciamiento adoptado	15

<u>DISEÑO DEL CIMIENTO CORRIDO DE LA PARED DEL TANQUE :</u>

DESCRIPCIÓN	VALOR
Ancho de vereda de protección (m)	0.5
METRADO DE CARGAS	
	3.84
Carga muerta (Kg/ml.)	863.80
Carga viva (Kg/ml.)	200.00
CARGA TOTAL =	1,549.32
Capacidad portante del terreno (Kg/cm2)	1.19
Ancho pre dimensionado de cimiento (m)	0.15
Ancho mínimo de cimiento (m)	0.20
Ancho adoptado de cimiento (m)	0.20
Peralte del cimiento (m)	0.53
EL PERALTE MINIMO SERA =	
Esfuerzo cortante Kg/cm2	11.24
Peralte pre dimensionado	7.73
Peralte adoptado (cms)	28
Diámetro de la varilla a utilizar	3/8
Área de la varilla a utilizar	0.71
Área de acero con cuantía mínima	2.58
Distribución de acero de cimiento (cms)	28
Acero por temperatura	0.64
Distribución del acero por temperatura (cms)	7

DISEÑO DE LA LOSA DE FONDO

DESCRIPCIÓN	VALOR
Espesor de losa (=espesor de muro)	12.00
Área de acero mínimo (cm2)	2.16
Varilla a utilizar	3/8
Distribución pre dimensionada (cms)	32.87
Distribución máxima (cms)	36
Distribución adoptada (cms)	15
• ` ´	

III. PRESENTACION DE RESULTADOS

4.1. Propuesta de Investigación

4.1.1. Sistema de agua potable

El sistema de agua potable que abastece a la población de Urpay en sus cuatro sectores que son Santa Elena, Pampa Verde, Chanchacap y Namumaca; debe proveer de agua potabilizada (apta para el consumo humano según la Ley General de Aguas) de forma rápida, continua, con un adecuado color, calidad y caudal, por eso mismo se realizó el estudio de la calidad del agua correspondiendo que determino que el agua solo necesita cloración y desinfección para potabilizarse, ósea que el agua captada puede tratarse dentro de los mismos reservorios planteados mediante cloración y desinfección con un hipoclorador.

Este sistema comienza en las captaciones limpias y controladas en las fuentes denominadas manantiales Pampa Verde 01 cota: 3,537.00 m.s.n.m. Q: 0.38 Vs, y Pampa Verde 02: cota: 3,536.00 m.s.n.m. Q: 0.30 Vs (SECTOR PAMPA VERDE Y SANTA ELENA); El manantial Chanchacap 01 cota: 3,262.00 m.s.n.m. Q: 0.40 Vs, Chanchacap 02 cota: 3,245.50 m.s.n.m. Q: 0.30 Vs, Chanchacap 03 cota: 3,232.50 m.s.n.m. Q: 0.25 Vs, y Chanchacap 04 cota: 3,225.50 m.s.n.m. Q: 0.25 Vs (SECTOR CHANCHACAP); El manantial Namumaca cota: 2,988.00 m.s.n.m. Q: 0.25 Vs (SECTOR NAMUMACA) según aforos realizados a los manantiales mencionados, en el caserío de Urpay, desde donde se trazan las líneas de conducción con las siguientes características:

Santa Elena y Pampa Verde	TUBERIA PVC SAP 1.5" C-10	8,840.46	m
Chanchacap	TUBERIA PVC SAP 2" C-10	1,057.70	m
Namumaca	TUBERIA PVC SAP 1" C-10	56.73	m

Existirán 03 líneas de conducción, la primera para el sector Santa Elena y Pampa Verde con una longitud de 8,840.46 m con Tub PVC

SAP C-10 Ø=1 1/2" que conduce de las captaciones Pampa Verde 01 y Pampa Verde 02 a un reservorio de 15m3; la segunda para el sector Chanchacap con una longitud de 1,057.70 m con Tub PVC SAP C-10 Ø=2" que conduce de las captaciones Chanchacap 01, Chanchacap 02, Chanchacap 03, Chanchacap 04 a un reservorio de 20m3; y la tercera para el sector Namumaca con una longitud de 56.73 m con Tub PVC SAP C-10 Ø=1" que conduce de la captación Namumaca 01 a un reservorio de 07m3.

De los reservorios de 20m3, 15m3 y 07m3 respectivamente sale una red de distribución para cada sector son las siguientes clases de tuberías 2", 1 ½", 1", y ¾". El agua que ingresa en el reservorio es potabilizada con un hipocloroso de larga duración, y alcanza los niveles calidad exigidos en la Ley General de Aguas. Inmediatamente luego de este proceso el agua discurre a través de la línea de aducción y luego a las redes de distribución diseñadas según la necesidad de caudal de cada caserío y/o localidad, de esta manera se asegura un sistema eficiente y limpio, evitando perdidas del recurso en la red y minimizando cualquier impacto negativo al entorno natural.

TUBERIA PVC SAP 2" C-10	19.61 m
TUBERIA PVC SAP 1 1/2" C-10	2,414.19 m
TUBERIA PVC SAP 1" C-10	9,636.79 m
TUBERIA PVC SAP 3/4" C-10	8,503.42 m

Todo el sistema se encuentra en base a los cálculos y estudios realizados y garantiza un funcionamiento y abastecimiento continuo en todo el sistema. Se ha previsto la construcción de 05 cámaras rompe presión tipo 6, 07 Pases Aéreos, 42 cámaras rompe presión tipo 7, la colocación de válvulas de purga, válvulas de control y 208 conexiones

domiciliarias de agua, las mismas que están distribuidas de la siguiente manera:

SECTOR	TOTAL DE	TOTAL DE	VIVENDAS		
	VIVIENDAS	LOCALES COMUNES	CON AGUA ENTUBADA	CON UBS	
Santa Elena y Pampa Verde	71	04	0	0	
Chanchacap	ap 107 03	03	0	0	
Namumaca	23	00	0	0	
TOTAL	201	07	0	0	
PORCENTAJE	100.00%		0.00%	0.00%	

Población Estacionaria: 868 Hab.

Total, de Población : 868 Hab.

Densidad Poblacional: 4.14 Hab/Viv.

Total, de Viviendas : 201 Viviendas (Familias)

Total, de Locales Com. : 07 Locales

4.1.2. Sistema de Saneamiento

Consiste en la evacuación de aguas negras domesticas que contiene sustancias sólidas en suspensión y disueltos. Estos tienen contenidos orgánicos nitrogenados y no nitrogenados que por ser material en descomposición presentan características perjudiciales para la salud pública, por ello su evacuación requiere la consideración de muchos factores.

- Mediante sistema de unidades básicas de saneamiento

Se realizará la construcción de 208 unidades básicas de saneamiento para cada uno de los beneficiarios del presente proyecto.

4.2. Análisis E Interpretación De Resultados

4.2.1. Sistema de abastecimiento de agua potable

Mejoramiento y ampliación de un adecuado sistema de abastecimiento de agua potable por gravedad tendrá como alternativa de solución única mediante el siguiente planteamiento:

- Construcción de 07 captaciones nuevas tipo ladera, ubicadas en las fuentes o manantiales Pampa Verde 01, y Pampa Verde 02 (Sector Pampa Verde y Santa Elena); El manantial Chanchacap 01, Chanchacap 02, Chanchacap 03, y Chanchacap 04 (Sector Chanchacap); El Manantial NAMUMACA (Sector NAMUMACA).
- Instalación de líneas de conducción en los cuatro sectores, con una longitud total de 9,954.89 ml, con tubería PVC SAP Clase 10, en diámetros de 2". 1 ½", 1", y ¾".
- Construcción de 04 Cámaras de reunión en línea de conducción de los sistemas.
- Instalación de Líneas de Aducción y Redes de distribución en ambos sectores, con una longitud total de 20,574.01 ml, con tubería PVC SAP Clase 10, en diámetros de 2". 1 ½", 1", ¾", y ½".
- Construcción de 07 pases aéreos con un total de 429.50 ml en la línea de conducción de los cuatro Sectores de Urpay.
- Construcción de Reservorio 01 de 15m3 (Sector Pampa Verde y Santa Elena), Reservorio 02 de 20 m3 (Sector Chanchacap), Reservorio 03 de 07m3 (Sector Namumaca), de concreto armado con un sistema de cloración interna.
- Construcción de 42 cámaras rompe-presión tipo 7.
- Instalación de válvulas de control y purga.
- Instalación de 208 piletas domiciliarias c/lavadero y escurridero adosada a la pared de la UBS proyectada.

4.2.2. Servicio de saneamiento rural (UBS):

Instalación de adecuados sistemas de disposición de excretas (UBS) tendrá como alternativas de solución el siguiente planteamiento:

- Instalación de 208 unidades básicas de saneamiento tipo Arrastre Hidráulico.
- Replanteo, excavación, nivelado, y limpieza de 208 plataformas de 2.20 X 2.75 mt. para UBS sanitarias.
- Relleno y compactado con material de afirmado e= 0.20 mt. de 208 plataformas de 2.20 X 2.75 mt. para UBS sanitarias.
- Construcción de 208 losas sanitarias e= 0.20mt. y sobre cimiento de concreto simple de 0.15 x 0.20mt., de F'c=175kg/cm2., que sirve como base para soporte de la estructura de la caseta de la UBS.
- Construcción de 208 casetas de muros de albañilería con puertas y ventanas de madera, y cobertura liviana con madera y planchas de ETERNIT GRAN ONDA de 1.10 x 3.05 mt.
- Instalación de 208 inodoros tanque bajo color blanco para cada caseta.
- Instalación de 208 duchas cromadas c/llave para cada caseta.
- 208 conexiones domiciliarias de desagüe, el mismo que se encuentra conectada a través de tub. Pvc sal 4" a un biodigestor de polietileno de 600 lts. y este a un pozo de drenaje de 1.00 x 1.50m relleno con material granular.

IV. DISCUSIÓN DE RESULTADOS

- Para realizar el diseño de la captación y el reservorio se ha utilizado la
 población futura de cada sector para su cálculo, mientras que las unidades
 básicas sanitarias con biodigestores solo serán usadas por la población actual.
- La captación que se tomó llevara el agua de los manantiales de cada sector directo a cada reservorio de 15m3, 20m3 y 7m3 respectivamente y no contaran con una Planta de Tratamiento de Agua Potable.
- Respecto a las líneas de distribución, la primera para el sector Santa Elena y Pampa Verde, se utilizara Tubería PVC ISO 1452 DN 63; la segunda para el sector Chanchacap se utilizó una Tubería PVC ISO 1452 DN 63; y la tercera para el sector Namumaca se utilizó una Tubería PVC ISO 1452 DN 63"
- Respecto al método de Unidades Básicas Sanitarias con biodigestores es mucho mejor desde el punto de vista ambiental, técnico, ecológico y económico para nuestra zona de estudio.

CONCLUSIONES

- La población tiene una tasa de crecimiento moderado de 4.17 por ciento, con muchas posibilidades de desarrollo, pero con un área urbana no definida y con una población futura de 886 habitantes, asumiendo un periodo de diseño de 20 años. Con estos datos se realizó el diseño para las redes y unidades básicas de saneamiento.
- La cantidad de agua en la población es deficiente, no cuentan con agua potable, el servicio es por horas y se tiene que recolectar a largas distancias. No tienen un sistema de Alcantarillado existente y las Unidades básicas de Saneamiento, son ineficientes.
- La topografía encontrada en el caserío Urpay, cuenta con diferentes altitudes, teniendo como cota más alta 3,537.00 msnm. en el sector Santa Elena y como cota más baja 2,988.00 msnm. en el sector Namumaca. En tal sentido utilizamos las diferentes cotas para el cálculo de la tubería de las redes de distribución, la cual llega con una presión de 15 Bares y con 10 Bares a las conexiones domiciliarias, respetando el reglamento nacional de edificaciones.
- Los resultados de laboratorio de mecánica de suelos nos dio un contenido de humedad 11.14%, Limite Liquido 20, Limite Plástico 18, un Índice de Plasticidad de 2, se clasifica según SUCS – GP GM y según AASHTO A-1-a(0). Realizando las calicatas; C-01 sector de Pampa verde y Santa Elena, C-02 sector Chanchacap y C-03 sector Namumaca. Por lo tanto, el material puede ser utilizado como relleno.
- El caudal máximo horario es 1.72 lts/seg, el cual se utilizó para el diseño de nuestras redes de distribución, se empleará la Tubería PVC ISO 1452 DN 63 logrando cubrir la demanda en las redes de distribución.
- Se realizó 3 reservorios, el reservorio 01 de 15m3 para el sector de Santa Elena y
 Pampa Verde, el reservorio 02 de 20m3 para el sector de Chanchacap y el reservorio
 03 de 7m3 para el sector de Namumaca de acuerdo a las necesidades de cada sector.

•	Se realizarán 208 casetas	de unidades	básicas	de	saneamiento	proyectadas,	logrando
	satisfacer la demanda.						

RECOMENDACIONES

- Se recomienda a las autoridades locales, designar un equipo técnico de trabajo para monitorear el crecimiento urbano o rural para así informar los datos obtenidos al gobierno local de turno.
- Se cuenta con una dotación de 80 lt/hab/día. Se sugiere brindar el servicio desde las
 4:00 a.m hasta la 1:00 p.m, debido a que el consumo máximo se realiza en las
 primeras horas del día por la necesidad de los sectores del caserío Urpay.
- De acuerdo a la topografía encontrada en el caserío Urpay se aconseja utilizar tubería PVC ISO 1452 con clase PN 10 y PN 16 respecto a las presiones que se encuentran en el proyecto.
- Se recomienda utilizar tubería PVC que tenga campana con anillo y así evitar fugas de agua, de esta manera logrando que el caudal y las presiones lleguen adecuadamente.
- Se recomienda realizar 3 limpiezas totales de los reservorios en el año para así evitar contaminaciones, también se debería mantener elementos que purifiquen el agua y de esta manera eviten la creación de microrganismos que afecten las características vitales del agua.
- Realizar charlas y capacitaciones a la población de Urpay sobre el uso correcto del sistema de alcantarillado con la implementación de los biodigestores para así evitar que se presenten fallas dentro de su funcionamiento por el mal uso que le puedan dar y también así evitar que este colapse.

REFERENCIAS BIBLIOGRÁFICAS

- López, A. (2014). Instalaciones eficientes de suministros de agua y saneamiento en edificaciones. Málaga: IC editorial.
- Malca y Urbina, (2017). "Propuesta técnica del sistema de agua potable y creación de unidades básicas sanitarias empleando biodigestores en el AA.HH. huaca blanca baja, distrito de pacanga, provincia de chupen La libertad"
- Meza, (2010). "diseño de un sistema de agua potable para la comunidad nativa de Tsoroja, analizando la incidencia de costos de difícil acceso".
- Núñez, (2015). Proyecto de tesis "Planeamiento de la infraestructura del sistema de agua potable y alcantarillado para el caserío de Trigobamba, del distrito de Bambamarca – Bolívar – La Libertad"
- Pomo & Soto, (2016). "Diseño de un sistema de abastecimiento de agua potable del caserío de a Haciendo – Distrito de Santa Rosa – Provincia de Jaén - Departamento de Cajamarca"
- Rojas, E (2011), aplicación de nuevas tecnologías para el tratamiento de aguas residuales en pequeñas poblaciones rurales distrito de Namora – Provincia Cajamarca – biodigestores.
- RNE, (2012). Reglamento nacional de edificaciones (4° ed.) Obras de saneamiento (p. 113). Megabyte
- Rodriguez P. (2001). Abastecimiento de agua. Recuperado de: www.civilgeeks.com.
- Saldarriaga, (2019). "Sistema de abastecimiento de agua subterránea al centro cívico de Trujillo. En caso de contingencia"

- Ulloa, (2016). "Diseño del Sistema de Agua y alcantarillado Sanitario para el Nuevo Mercado "El progreso" – La Hermelinda – Trujillo – La libertad.

ANEXOS Anexo N°1: Plano de Ubicación de Caserío Urpay.

Fuente: Municipalidad Provincial Sánchez Carrión.

Anexo $N^{\circ}2$: Realizando la topografía de Urpay con los ayudantes y pobladores de Urpay.

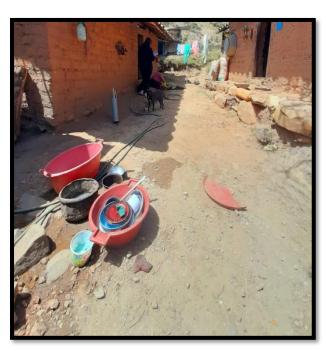
Fuente: Fotografía propia.

Anexo $N^\circ 3$: Tesistas Kyara Rojas y Laura Rubio realizando las encuestas de calidad de agua a la población de cada sector de Urpay.

Fuente: Fotografía Propia.

Anexo $N^{\circ}4$: Lugar donde se realizado la calita $N^{\circ}01$ de 1.5 metros de profundidad por 1m2

Fuente: Fotografía Propia.


Anexo $N^\circ 5$: Lugar donde se realizado la calita $N^\circ 02$ de 1.5 metros de profundidad por 1m2

Fuente: Fotografía Propia.

Anexo $N^{\circ}6$: Lugar donde se realizado la calita $N^{\circ}03$ de 1.5 metros de profundidad por 1m2

Fuente: Fotografía Propia.

Trujillo, 04 de noviembre del 2020

RESOLUCIÓN Nº 1067-2020-FI-UPAO

VISTO, el informe favorable del Jurado Evaluador del Proyecto de Tesis, titulado "DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE Y UNIDADES BÁSICAS DE SANEAMIENTO EMPLEANDO BIODIGESTORES EN EL, CASERIO URPAY-HUAMACHUCO - PROVINCIA DE SÁNCHEZ CARRIÓN - LA LIBERTAD", de los Bachilleres: ROJAS REVILLA, KYARA SARAH y RUBIO ORTIZ, LAURA ABIGAIL, de la Carrera Profesional de Ingenieria Civil, y;

CONSIDERANDO:

Que, el Jurado Evaluador conformado por los señores docentes: Ing. GUILLERMO QUIROZ CABANILLAS, Presidente; Ing. ALVARO SALAZAR PERALES, Secretario; Ing. MARCELO MERINO MARTINEZ, Vocal; han revisado el Proyecto de Tesis, encontrándolo conforme;

Que, el Proyecto de Tesis ha sido elaborado conforme a las exigencias prescritas por el Reglamento de Grados y Titulos de Pregrado de la Universidad, el mismo que fue sometido a evaluación por el mencionado jurado evaluador, quien por acuerdo unánime recomendo su aprobación, tal como se desprende del informe elevado a la Facultad de Ingeniería;

Que, de acuerdo al Artículo 28" del Reglamento de Grados y Títulos de la Universidad, el Proyecto de Tesis se inscribe en el libro de proyectos de tesis a cargo de la Secretaría Académica de la Facultad;

Estando al Estatuto de la Universidad, al Reglamento de Grados y Títulos la Universidad y a las atribuciones conferidas a éste Despacho;

SE RESUELVE:

PRIMERO: APROBAR la modalidad de titulación solicitada por los Bachilleres ROJAS REVILLA, KYARA SARAH y RUBIO ORTIZ, LAURA ABIGAIL, consistente en presentación, ejecución y sustentación de una TESIS para optar el título profesional de INGENIERO CIVIL.

SEGUNDO: APROBAR Y DISPONER la inscripción del Proyecto de Tesis titulado: "DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE Y UNIDADES BÁSICAS DE SANEAMIENTO EMPLEANDO BIODIGESTORES EN EL, CASERÍO URPAY-HUAMACHUCO - PROVINCIA DE SÁNCHEZ CARRIÓN - LA LIBERTAD".

TERCERO: COMUNICAR a los Bachilleres que tienen un plazo máximo de UN AÑO para desarrollar su tesis, a cuyo vencimiento, se produce la caducidad del mismo, perdiendo el derecho exclusivo sobre el tema elegido.

Dr. Angel

DECANO

Quenta

REGISTRESE, COMUNIQUESE Y ARCHIVESE.

FACULTAD DE HAGENERIA

DECANATO

PERU

102

INFORME FINAL DE ASESORAMIENTO DE TESIS

Señor

DECANO DE LA FACULTAD DE INGENIERIA

Asunto:

INFORME FINAL DE ASESORAMIENTO DE TESIS

Fecha:

Trujillo 12 de diciembre de 2020

De conformidad con el Art. 34 del Reglamento de Grados y Títulos de Pregrado de la Universidad Privada "Antenor Orrego", cumplo con emitir informe final del asesoramiento de la Tesis "DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE Y UNIDADES BASICAS DE SANEAMIENTO EMPLEANDO BIODIGESTORES EN EL CASERIO DE URPAY – HUAMACHUCO – PROVINCIA DE SANCHEZ CARRION – LA LIBERTAD" de Los Bachilleres Rojas Revilla, Kyara Sarah y Rubio Ortiz, Laura Abigail, nombrados con Resolución Nº 1067-2020-FI-UPAO

Se ha cumplido con el 100% del informe de tesis de acuerdo al cronograma establecido además el informe de tesis reúne la calidad académica exigida, entre

otras apreciaciones que considere pertinentes

Por lo expuesto, agradeceré a usted, tomar en consideración el presente trabajo, y se le designe el Jurado, para su evaluación y sustentación respectiva.

Atentamente,

ING. MANUEL-VERTIZ MALABRIGO

ASESOR